
ПРОМЫШЛЕННЫЙ АНАЛИЗАТОР РН/ОВП (ОКИСЛИТЕЛЬНО - ВОССТАНОВИТЕЛЬНОГО ПОТЕНЦИАЛА)

AQUA-LAB AQ-300-RS485

Пароль по умолчанию: 0000

Примечание: Просим ознакомиться с настоящим руководством по эксплуатации

Благодарим за покупку нашего изделия. С целью постоянного улучшения качества и расширения функциональности анализатора, наша компания оставляет за собой право в любое время изменять содержание дисплея и Фактический дисплей отображаемые символы. может отличаться приведенного в руководстве по эксплуатации, потому фактические условия работы зависят от характеристик конкретного прибора. При использовании этого анализатора соблюдайте порядок работы, описанный в руководстве по эксплуатации, и правила монтажа. Компания не несет ответственности за любые убытки или ущерб, вызванные ненадлежащим использованием прибора какимлибо физическим или юридическим лицом. Если вы имеете какие-либо вопросы или обнаруживаете ошибки или упущения в инструкции по эксплуатации, свяжитесь с персоналом компании.

Безопасности меры предосторожности

- 1. Прочитайте это руководство перед установкой. Учтите, что нарушение рекомендаций приводит к проблемам безопасности и повреждению оборудования.
- 2. При установке прибора избегайте высокой температуры, высокой плажности, контакта с коррозионными средами и прямого еелнечного света.
- 3. Линия передачи сигнала от электрода должна включать специальный коаксиальный кабель, который предлагается приобрести у компании. Не следует применять другие доступные на рынке кабели.
- 4. При использовании источника питания следует избегать помех от источника питания, особенно при трехфазном питании. Следует использовать провод (чтобы избежать заземляющий перепада напряжения, анализатора и устройств управления (например, дозирующая машина, миксер и т.д.) должно подаваться от разных источников. Другими словами, передатчик должен получать питание от отдельного источника или быть подключен к катушке электромагнитного контактора. Все питаемые устройства управления должны быть подключены к заградительному фильтру, позволяющему устранить перепад напряжения).
- 5. Выходные контакты анализатора передают тревожные и управляющие сигналы. Исходя из соображений безопасности и защиты, убедитесь, что внешнее сопротивление достаточно, чтобы выдерживать ток реле.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Краснодар (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Казахстан (772)734-952-31 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Таджикистан (992)427-82-92-69 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (2820)49-02-64 Ярославль (4852)69-52-93

Каталог

I. Введение	
Технические характеристики	5,6
II. Настройка и установка	7-9
2.1 Установка на вертикальных поверхностях	7
2.2 Справочный чертеж установки в шкафу	
2.3 Справочный чертеж установки на стене	
2.4 Электрод и защитная трубка	8,9
III.Электрод и элекропроводка	10
3.1 Схема подключения	10
3.2 Функционирование неподвижной группы размыкающих	
контактов	11
3.3 Указания по электромонтажу	
IV.Описание панели	
4.1 Описание конпок	
4.2 Описание экрана дисплея	13
4.3 Описание электропроводки	
V.Осуществление операций	15
5.1 Измерение	15
5.1 Режим установки параметров	15
5.1 Измерение 5.1 Режим установки параметров VI. Настройка	6-31
6.1 Режим ввода значений параметра	17
6.2 Режим установки языка	18
6.3 Режим установки пароля	
6.4 Режим установки типа электрода	
6.5 Режим настройки калибровки	
6.6 Режим трех-точечной калибровки	
6.7 Калибровка ОВП	
6.8 Режим установки температуры	24
6.9 Режим установки реле2	
6.10 Режим установки выходного тока	
6.11 Режим установки текущего времени	
6.12 Режим регулировки подсветки	
6.13 Сброс к заводским настройкам	
6.14 Режим настройки связи	
VII. Стандартные заводские настройки	
VIII. Обслуживание	
Графики	
Контактная информация	40

І.Введение

I. Введение

Настоящая новая модель обладает искусственным интеллектом и гибкостью. Прибор может одновременно измерять температуру и PH/ORP и широко используется в городских станциях очистки сточных вод, водоснабжении, электроснабжении, медицине, химической, пищевой и других отраслях промышленности. Прибор позволяет непрерывно определять величину PH/ORP в растворе.

Основные функции

- 1. Английский интерфейс, можно переключиться на китайский язык, прост в эксплуатации
- 2. Автоматическая и ручная температурная компенсация для удовлетворения потребностей пользователей
- 3. Два выхода 4-20 мА, соответствующие значению DO и температуре, с использованием технологии изоляции, с сильной защитой от помех
- 4. Два реле могут свободно переключаться в верхней и нижней точках, а величина гистерезиса может свободно регулироваться
- 5. Питание прибора 220 В переменного тока и двойной вход 24 В постоянного тока
- 6. 480 * 800 IPS LCD, четкий дисплей, возможность регулирования яркости в днапазоне 5-100%
- 7. Уровень защиты IP65, подходит для использования на открытом в здуке
- 8. Функция управления паролями для предо врищении доступа непрофессионального персонала

Технические параметры прибора

Измерение: РН (0-14РН); ОВП (-2000 - +2000 мВ)

Точность: $\pm 0,01$ pH; ± 1 мВ Разрешение: 0,01pH; 1 мВ

Стабильность: $\leq 0,02 \text{ pH} / 24 \text{ часа}; \leq 3 \text{ мВ} / 24 \text{ часа}$

Буферный раствор рН: 4.00-6.86, 6.86-9.18, 4.00-7.00, 7.00-10.00 четыре группы Температурная компенсация: °С Ручной/Авто (РТ1000) 0–100 Выход сигнала: Выход защиты изоляции 4-20 мА, независимо от соответствующего РН / ORP или температуры, максимальная нагрузка 500Ом

Выход сигнала тревоги: Две группы могут произвольно соответствовать аварийной сигнализации (3 A/250 В переменного тока), реле с нормально разомкнутыми контактами

Мощность: пер. ток 220 В и

пост. ток 24 В

Потребляемая мощность: ≤5 Вт

Окружающая среда: (1) Температура: 0-60 °C (2) Влажность: ≤85 % отн.

влаж.

Размеры: 144×144×115 мм (В×Ш×Г) Размер проема: 138×138 мм (В×Ш)

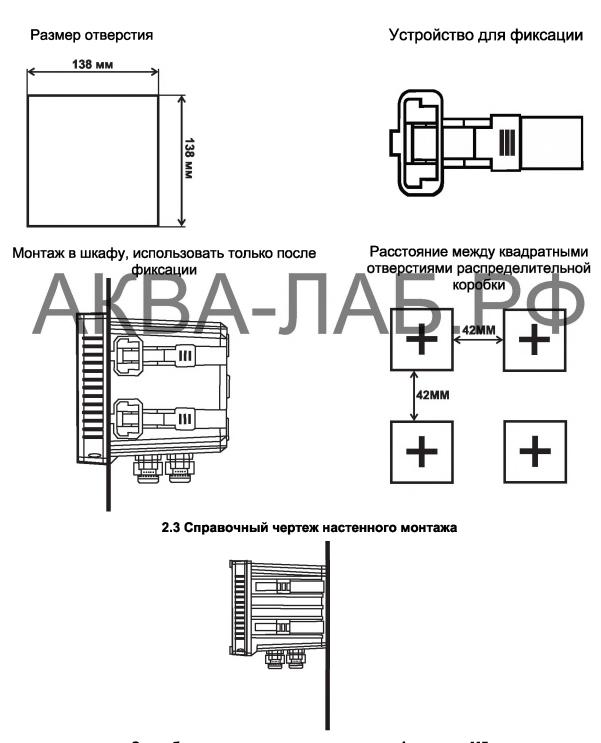
Степень защиты: IP65

Технические характеристики

М	одель	RP-3000				
Тестирує	емый параметр	PH / ORP / TEMP				
	pН	0,00~14,00 pH				
Диапазон	ORP	-2000∼2000 мВ				
испытания	ТЕМПЕРАТУРА	-30.0∼130.0°C				
	pН	0,01 PH				
Разрешение	ORP	1 мВ				
	ТЕМПЕРАТУРА	0.1 °C				
	pН	±0,01 РН (±1 цифра)				
Точность	ORP	±0,1% (±1 цифра)				
	ТЕМПЕРАТУРА	±0,2°C (±1 цифра)				
Компенсация температуры Режим правки	Ручная колпенсация температуры Индивидуальная одногочечная и явухточечная коррекция и					
Температура рабочей среды		0~50 ℃				
Хранение температура		-20∼70 °C				
Входной импеданс		$>10^{12} \Omega$				
Экран дисплея	Большой ЖК-дисплей с подсветкой, оснащенный датчиками освещенности для автоматического и ручного выбора подсветки					
Выходной ток первый	_	ий тип 0 / 4-20 мА, можно установить напазон измерения РН / ORP, максимальная нагрузка 500 Ом				
Выходной ток второй	_	ій тип 0 / 4-20 мА, можно установить й диапазон измерения ТР, максимальная нагрузка 500 Ом				

Технические характеристики

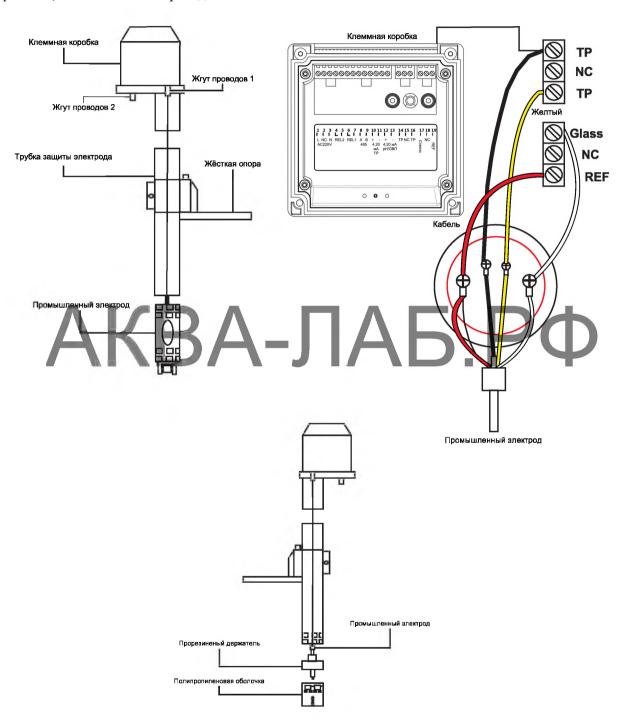
Управляющее устройство	Управляющий выход	Контакт ВКЛ/ВЫКЛ РЕЛЕ, 240 В АС 0,5 А макс.			
	Установка	HI / LO Две независимые контрольные точки			
Очистка	настроек	Вывод контакта ON 0 \sim 9999 c/OFF 0 \sim 999.9 ч			
Выходное	напряжение	±12 В постоянного тока			
Степень	защиты	IP65			
Источник эле	вктропитания	100 В~240 В переменного тока ±10%, 50/60 Гц			
Метод у	становки	Настенный / В трубопроводе / Панель			
Раз	мер	144 мм×144 мм×115 мм (В×Ш×Г)			
Порог от	гсечения	138 мм×138 мм (В×Ш)			
В	ec	0,8 кг			


II. Настройка и установка

2.1 Установка на вертикальных поверхностях

Передатчик может быть установлен на стене или на панели.

2.2 Справочный чертеж установки шкафа


Примечание: На поверхности установки сначала отложите квадратное отверстие размером 138 × 138 мм в панели распределительной коробки, поместите передатчик из панели распределительной коробки прямо внутрь, передатчик, прикрепите к фиксированной задней крышке, карту вставьте в зафиксированный паз.

Способ настенного монтажа, крепление 4 винтами М5

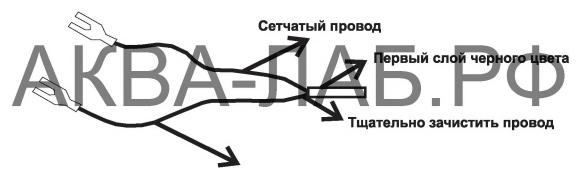
2.4 Электрод и защитная трубка

- 1. Центральная ось внешнего прозрачного проводящего слоя резины и металлического сетчатого слоя, линия должна быть очищена от проводящего резинового слоя, а слой металлической сетки должен быть выполнен катаной проволокой.
- 2. Кабель прокладывается к главному устройству, в дополнение к промежуточной распределительной коробке за пределами специального контакта, который не может иметь никакого контакта, непосредственно к центральной оси кабеля к стеклянному узлу, подключенному к задней части главного устройства, как контактный провод Ref.

Пропустите кабели и электроды через защитную трубку в распределительную коробку. (основное назначение: предотвратить контакт электродной линии с жидкостью)

Метод установки датчика со стеклянным корпусом:

Датчик (стекло) обшит резиновым держателем, длина стеклянного электрода около 5см, затем ПВХ и втулка навинчена на защитную трубку.


Метод установки датчика с пластиковым корпусом:

Черный (пластиковый) необходимо добавить небольшое количество ленты ребра электрода, можно непосредственно навинтить на защитную трубку. Клемма кабеля электрода в клеммной коробке, клемма подключения кабеля и приборной линии и подключена к вышеуказанному.

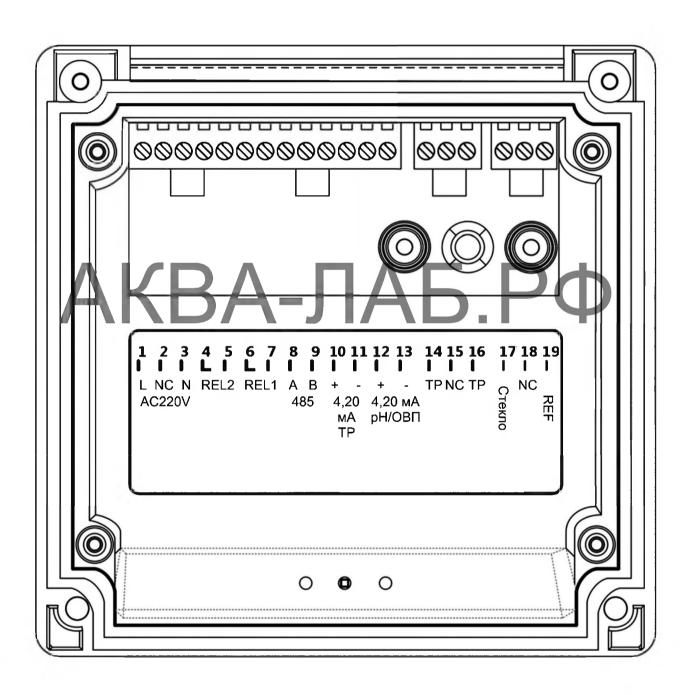
Примечание:

- 1 Проводка должна быть отделена от проводящего черного провода на центральной линии.
- 2 Кабель датчика не должен контактировать с жидкостью, в противном случае датчик может быть поврежден (техническое обслуживание не поможет устранить проблему), сигнал может вызывать короткое замыкание, а фиксированное значение на дисплее прибора не изменится.

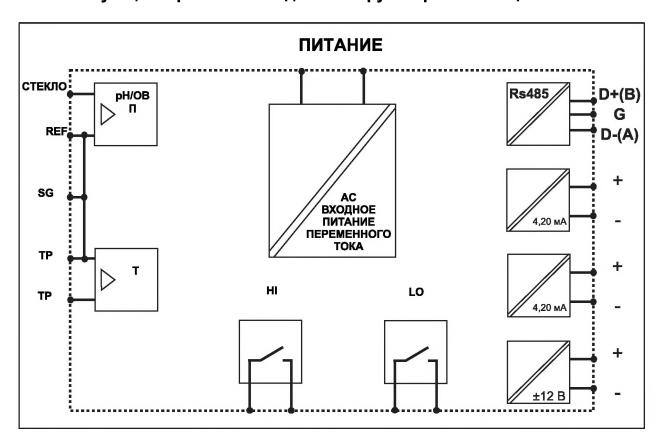
Метод удлинительной кабельной линии электрода:

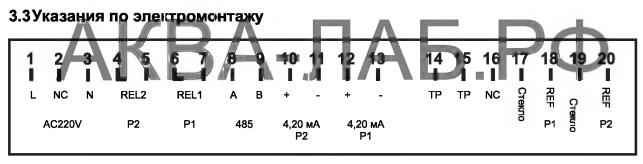
Второй провод прозрачный для подключения прибора

Конфигурация коаксиального кабеля:


Центральная линия: Провод электрода +: Контрольная линия электрода -

В правильной схеме (как выше), внешняя черная резиновая оболочка направляющей оправки должна быть снята. Токопроводящая сигнальная линия электрода из резины или алюминиевой фольги центральной оси и кабеля должна быть зачищена. Кабель простирается до середины главного устройства, не может иметь контакта, непосредственно к центральной оси кабеля, чтобы СТЕКЛЯННЫЙ контакт был подключен к задней части главного устройства, а кабель был подключен к контакту Ref.


Примечание: если стандартный кабель не соответствует требованиям, кабель удлинять не следует. Обратитесь к поставщику, чтобы получить специальный кабель. В противном случае работа прибора будет нарушена. Кабель рекомендуется удлинять на не более 30 метров. При большем удлинении необходимо усилить сигнал при помощи усилителя.

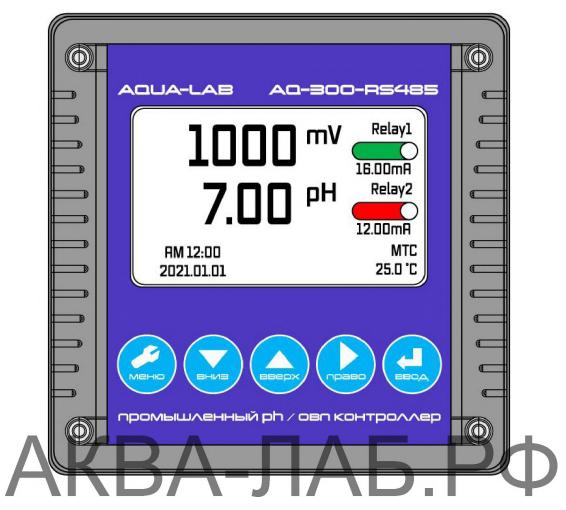

Ш.Электрод и электропроводка

3.1 Схема подключения

3.2 Функционирование неподвижной группы размыкающих контактов

- 1, 3: AC 220V
- 2: NC: не нужно
- 4, 5: REL2: Второй контроль сигнала тревоги, внешнее реле
- 6, 7: REL1: Первый контроль сигнала тревоги, внешнее реле
- 8: Мах485-А: Контакт А для передачи данных
- 9: Мах485-В: Контакт В для передачи данных
- 10: Положительный вывод токового выхода канала 2
- 11: Отрицательная клемма токового выхода канала 2
- 12: Положительный вывод токового выхода канала 1
- 13: Отрицательная клемма токового выхода канала 1
- 14: Т/Р: РТ1000 интерфейс температуры и сопротивления 1
- 15: Т/Р: РТ1000 интерфейс температуры и сопротивления 2
- 16: NC: не нужно
- 17: Стеклянный канал 1 положительный конец интерфейса прозрачного интерфейса РН / ORP-электрода
- 18: Отрицательный конец интерфейса черного интерфейса электрода PH/ORP, канал 1 REF
- 19: Стеклянный канал 2 Положительный конец прозрачного интерфейса PH / ORP-электрода
- 20: Отрицательный конец интерфейса черного интерфейса электрода PH/ORP, канал 2 REF

Примечание: АС: 100-240 В переменного тока \pm 10% 50/60 Γ ц


DC: 12-24V

Мощность: +5 рабочих

Реле: Выдерживаемое напряжение 240 В, максимальный ток 0,5 А

Выходной ток: Максимальный допуск 500 Ом

IV.Описание панели

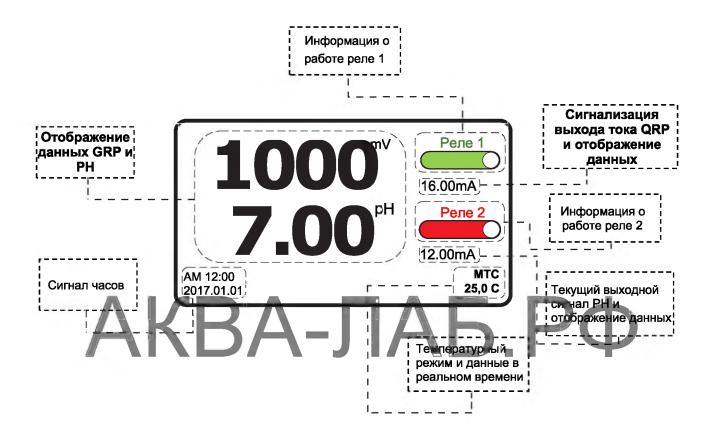
4.1 Описание кнопок

Чтобы предотвратить ошибки при работе персонала, при входе в настройку параметров и, более того, включить защиту паролем, используются следующие функции:

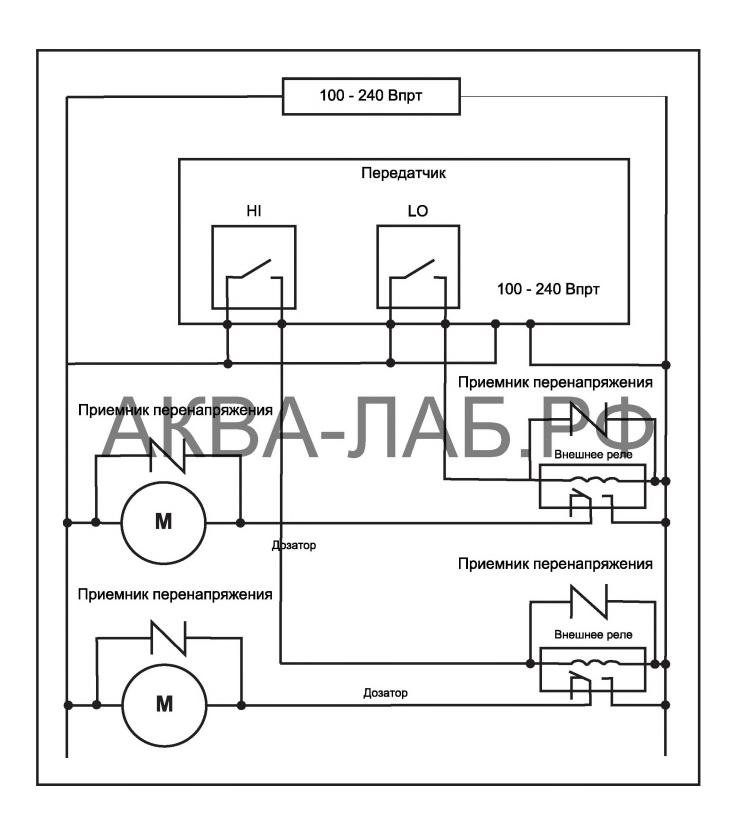
: Устанавливает интерфейс в режиме измерения, устанавливает интерфейс для возврата в меню верхнего уровня

: В режиме измерения используется для просмотра исторической информации о тревоге, а на интерфейсе используется для переключения меню и настройки числовых значений.

: Переключение и цифровая настройка меню на исходном интерфейсе

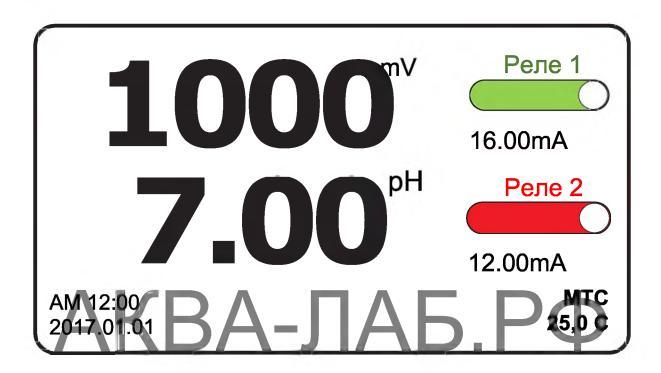


: Переход в следующий слой меню



: Режим измерения для просмотра основных параметров системы, настройки интерфейса для входа в следующее меню

4.2 Описание экрана дисплея


4.3 Описание электропроводки

V. Осуществление операций

5.1 Измерение

Убедитесь, что все подключения выполнены правильно и корректно, прибор включен, имеется автоматический доступ к исходным заводским настройкам или окончательному набору режима измерения, произошел запуск мониторинга.

5.2 Режим установки параметров

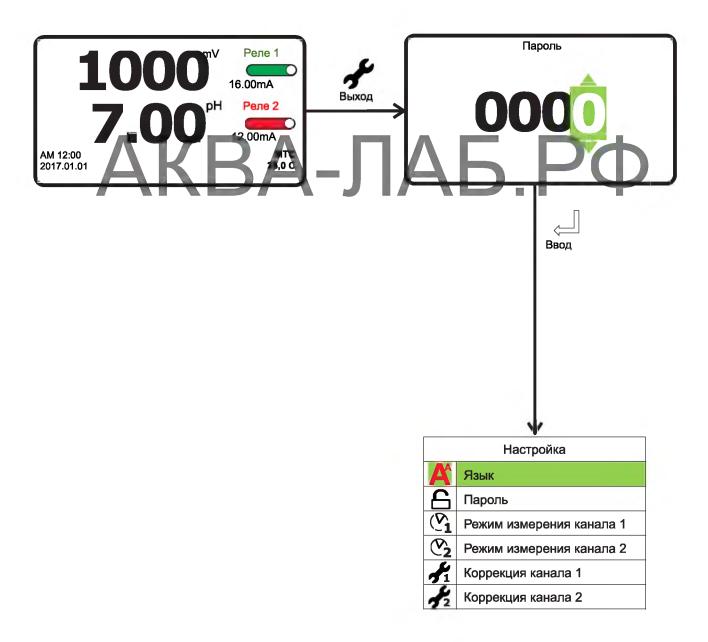
В режиме измерения нажмите клавишу ВЫХОД, чтобы войти в интерфейс ввода пароля, введите правильный пароль и нажмите клавишу В, чтобы войти в режим настройки параметров. Заводской стандартный пароль 0000.

Интерфейс режима настройки параметров

Настройка			Настройка	Настройка		
A	Язык	A	Температура	(Часы	
6	Пароль	4	Калибровка тока		Подсветка	
$ \nabla_{1} $	Режим измерения канала 1	$ \mathcal{I}_1 $	Ток канала 1	밈	Установка обмена данными	
(V ₂	Режим измерения канала 2	1/2	Ток канала 2	Q	Сброс	
4 1	Коррекция канала 1	R_1	Реле 1			
\$ 2	Коррекция канала 2	R_2	Реле 2			

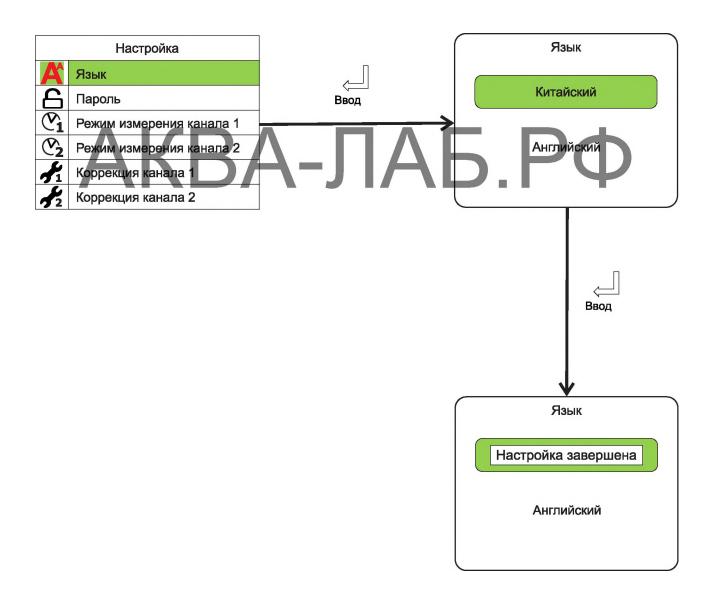
Первая страница Вторая страница Третья страница

VI.Настройка


№ п/п		Название меню	Описание меню
1	A	Язык	Устанавливает язык (китайский или английский)
2	6	Пароль	Устанавливает пароль
3	V 1	Канал 1 режим измерения	Устанавливает режим измерения системного канала 1
4	V ₂	Канал 2 режим измерения	Устанавливает режим измерения системного канала 2
5		Коррекция канала 1	Корректировка соответствующего режима измерения системного канала 1
6	1/2	Коррекция канала 2	Корректировка соответствующего режима измерения системного канала 2
7		Температура	Устанавливает режим температурной компенсации системы и процентную компенсацию
8	BS.	Калибровки тока	Корректировка така системы
9	A	Ток канала 1	Устанавливает ток рабочеп режима канала ч
10	4 ₂	Ток канала 2	Устанавливает ток рабочего режима канала 2
11	R_1	Реле 1	Устанавливает режим работы реле 1 и диапазон запуска
12	R_2	Реле 2	Устанавливает режим работы реле 2 и диапазон запуска
13	V	Часы	Устанавливает системные часы
14	- <u></u>	Посветка	Установите время задержки подсветки ЖК-дисплея системы, высокую и низкую яркость
15		Установки обмена данными	Установите системный адрес связи и скорость передачи
16	C	Сброс	Сброс к заводским настройкам

В интерфейсе измерений нажмите ВЫХОД и введите пароль на цифровом экране.

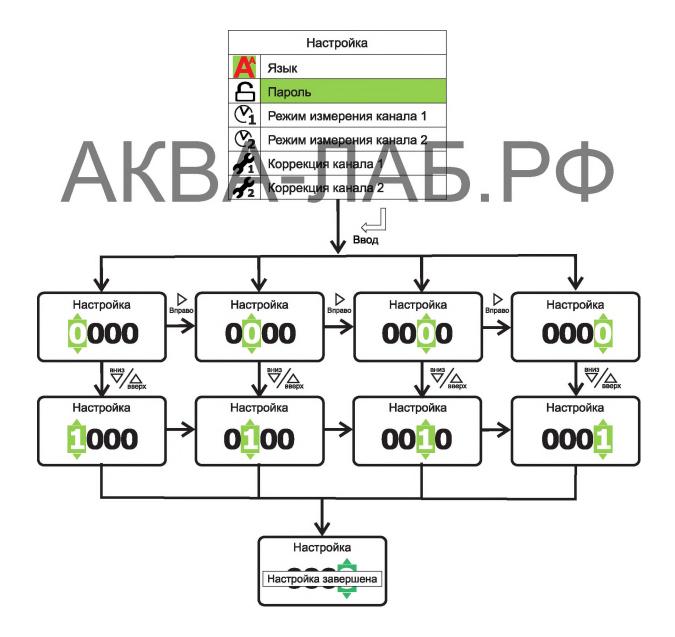
Нажмите ВНИЗ или ВВЕРХ для изменения цифр пароля и нажмите ВВОД для


перехода в экран настроек. Заводской стандартный пароль 0000.

В интерфейсе измерений нажмите ВНИЗ или ВВЕРХ для изменения языка в настройках.

Нажмите ВВОД для перехода в экран настроек. Нажмите ВНИЗ или ВВЕРХ для выбора

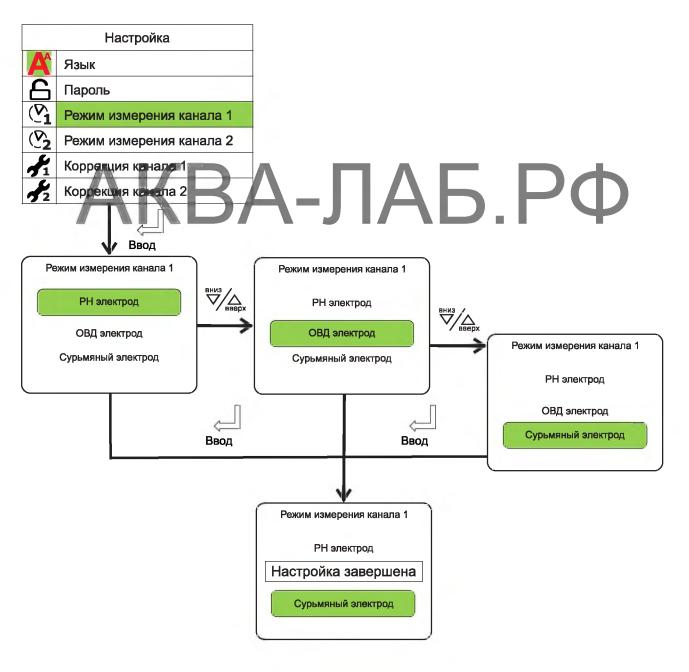
нужного языка, затем нажмите ВВОД для подтверждения.



В интерфейсе измерений нажмите ВНИЗ или ВВЕРХ для изменения пароля в настройках.

Нажмите ВВОД для перехода в экран настроек. Нажмите ВНИЗ или ВВЕРХ для набора

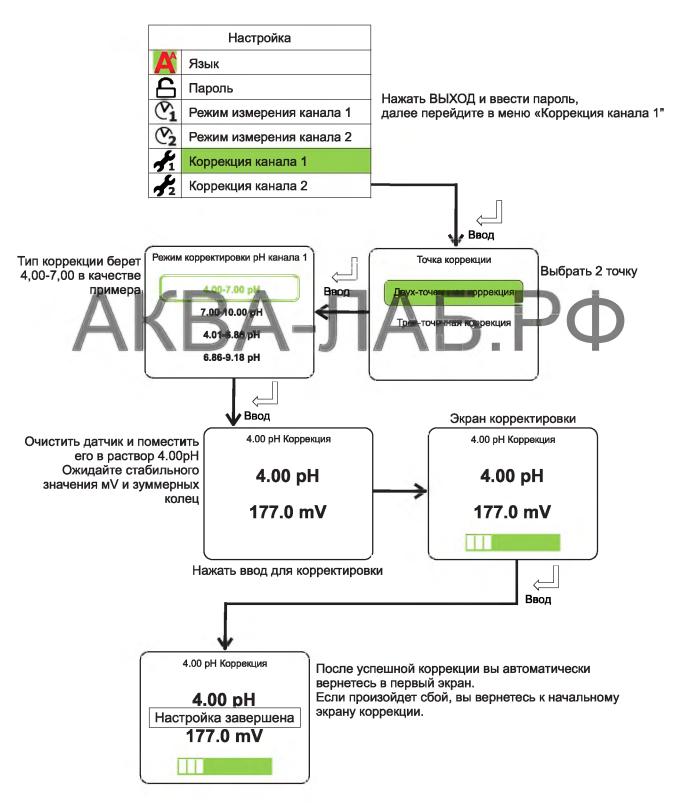
нужного пароля, затем нажмите ВВОД для подтверждения.


Заводской стандартный пароль 0000.

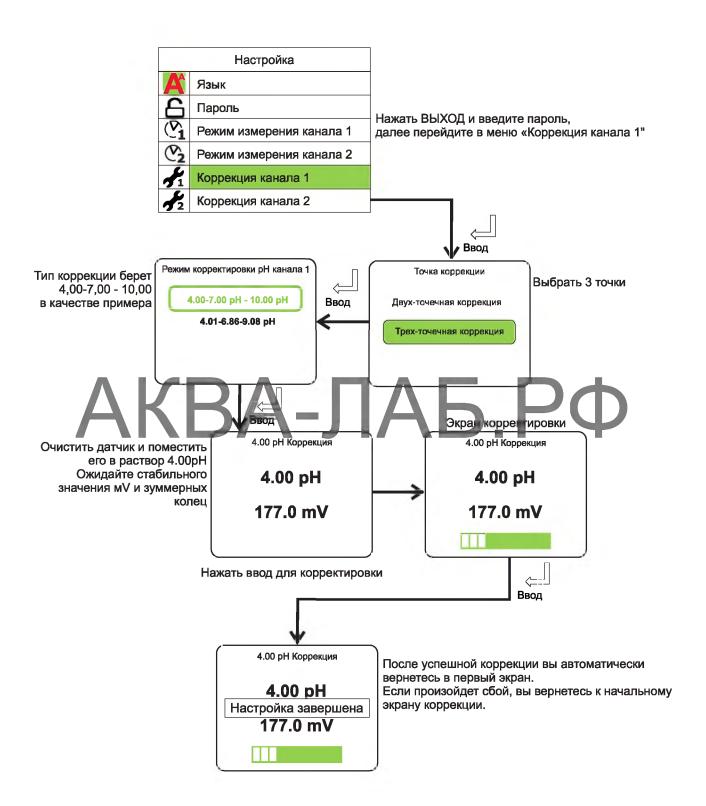
В интерфейсе измерений нажмите ВНИЗ или ВВЕРХ для навигации по режиму измерений.

Нажмите ВВОД для перехода в экран настроек. Нажмите ВНИЗ или ВВЕРХ чтобы

выставить необходимые настройки электрода, затем нажмите ВВОД для подтверждения.

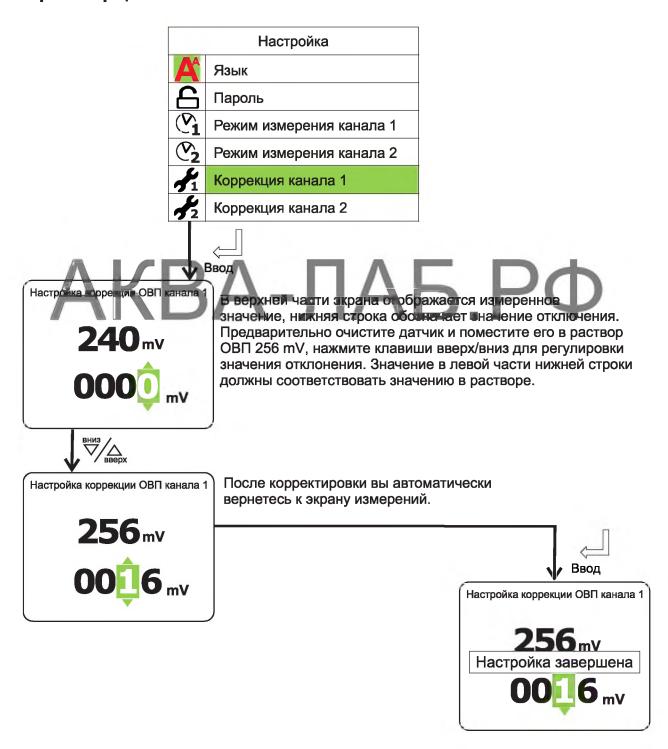

6.5 Режим настройки калибровки

Интерфейс системы разделен на рН и ОВП в соответствии с различными типами электродов.


Автоматическая коррекция РН, пользователи могут выбрать 4,00-7,00, 7,00-10,00, 4,01-6,86, 6,86-9,86, режим двух-точечной коррекции четырех типов и 4,00-7,00-10,00, 4,01-6,86-9,18, и режим двух-точечной коррекции трех типов. Корректировка показана ниже:

Примечание: Возьмите в качестве примера режим коррекции канала 1

Режим двух-точечной коррекции:

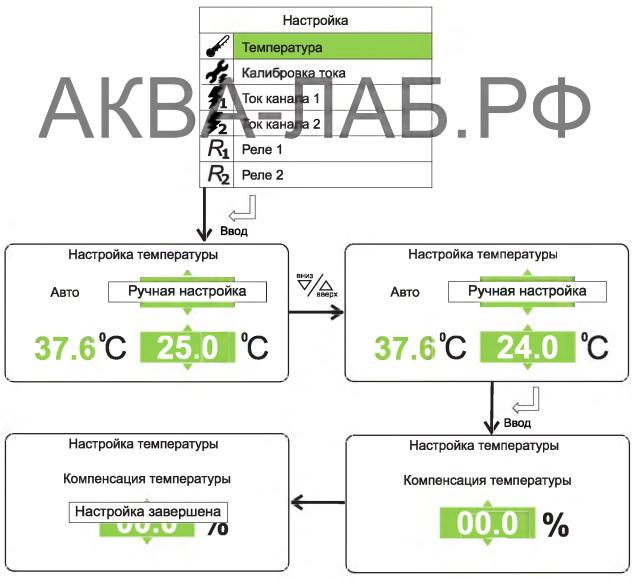

6.6 Режим трех-точечной коррекции:

6.7 Калибровка ОВП:

В процессе коррекции ОВП, экран зеленого цвета настраивается пользователем, экран черного цвета показывает значение, которое сейчас настроено.

Пользователи могут настроить смещение с помощью кнопок ВНИЗ или ВВЕРХ так, чтобы скорректированное значение соответствовало стандартному значению ликвидности ОВП.

6.8 Режим установки температуры


На экране настроек нажмите ВНИЗ или ВВЕРХ для изменения настроек температуры.

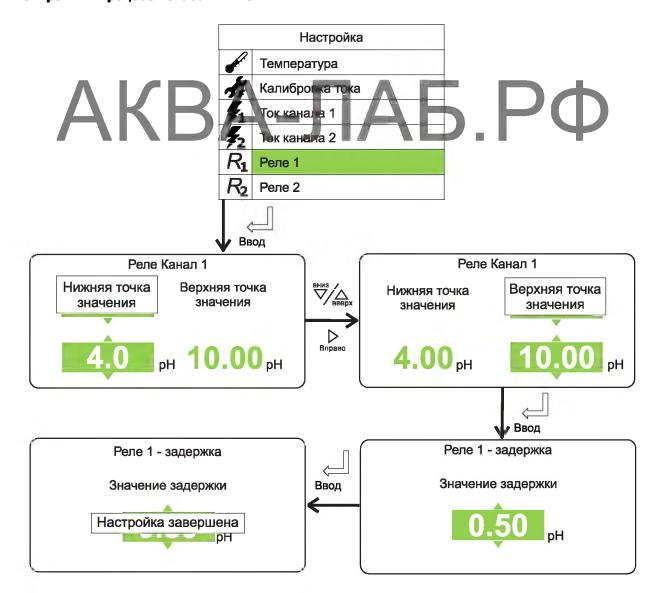
Нажмите ВВОД для перехода в экран настроек. Система отображает интерфейсы дисплея

МТС и АТС в зависимости от выбранного режима температурной компенсации

Нажмите ВНИЗ или ВВЕРХ чтобы выставить необходимые настройки температурного

режима, затем нажмите ВВОД для подтверждения.

6.9 Режим установки реле


На экране настроек нажмите ВНИЗ или ВВЕРХ для изменения настроек.

Нажмите ВВОД для перехода в экран настроек «РЕЛЕ». Через операцию вышеописанного

процесса после завершения переключения РЕЛЕ происходит настройка режима работы РЕЛЕ.

Нажмите ВНИЗ или ВВЕРХ чтобы выставить необходимые настройки срабатывания РЕЛЕ и

значения гистерезиса, затем нажмите ВВОД для подтверждения.

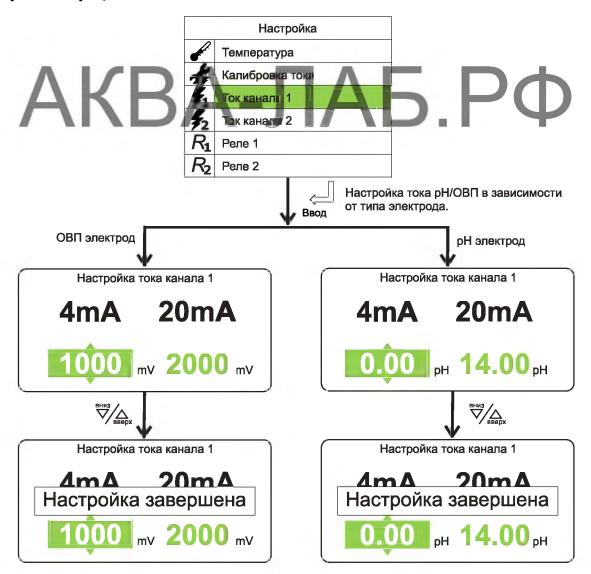
Тип дозирования = низкая точка
Высокое значение триггера = 7,00 pH
Значение гистерезиса = 0,50 pH
При данной настройке при значении pH ниже 7,
дозирование начинается, при значении pH выше 6,5,
дозирование прекращается

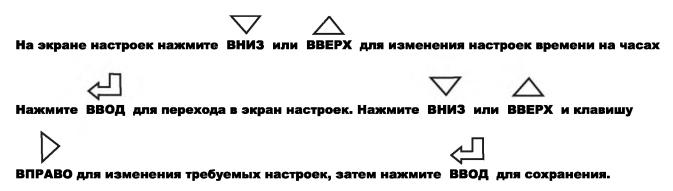
Высокая точка добавления кислоты Например:

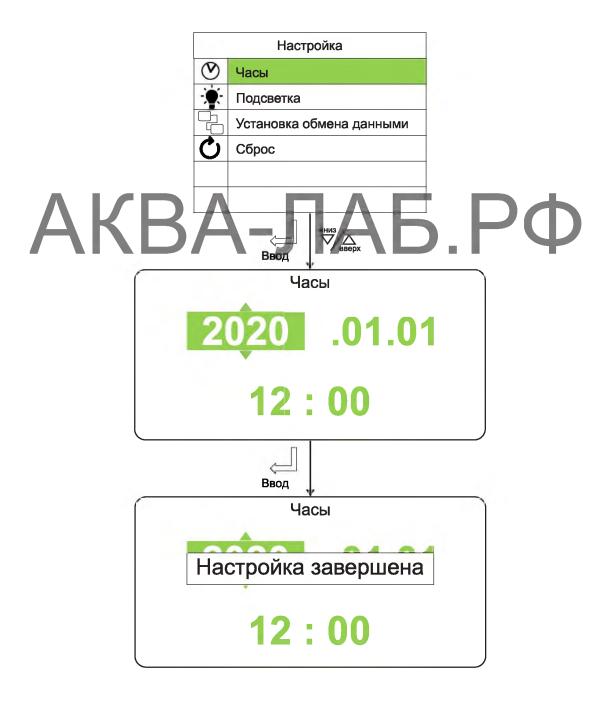
Тип дозирования = высокая точка
Высокое значение триггера = 7,00 pH
Значение гистерезиса = 0,50 pH
При данной настройке при значении pH выше 7, дозирование начинается, при значении pH ниже 6,5, дозирование прекращается

На экране настроек нажмите ВНИЗ или ВВЕРХ для изменения настроек ОВП и рН.

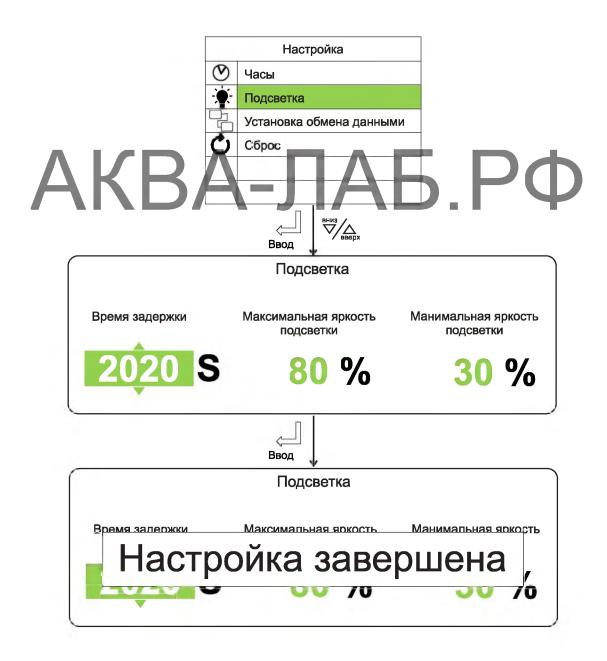
Нажмите ВВОД для перехода в экран настроек. Система отображает интерфейсы отображения ОВП и рН в соответствии с выбраным электродом.

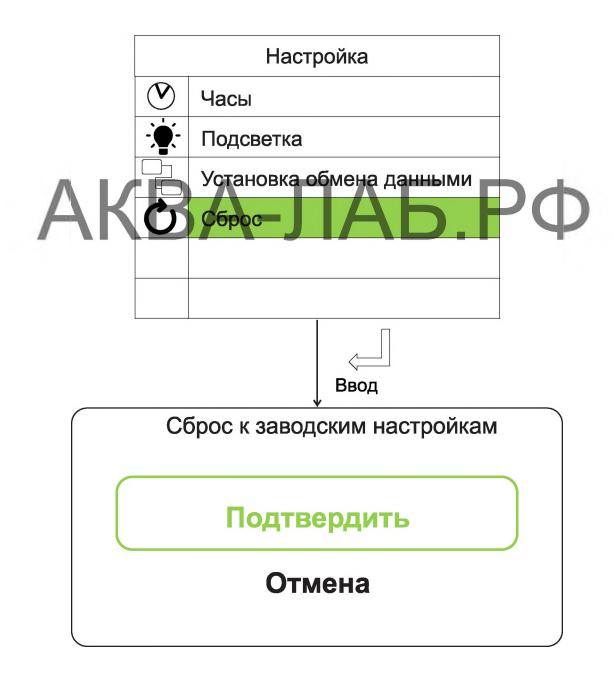

 ∇ \triangle


Нажмите ВНИЗ или ВВЕРХ для изменения настроек высокой и низкой точки тока


гистериза, затем нажмите ВВОД, далее нажмите ВНИЗ или ВВЕРХ для изменения

требуемых настроек. и нажмите ВВОД для сохранения настроек.




На экране настроек нажмите ВНИЗ или ВВЕРХ для изменения настроек подсветки.

Нажмите ВВОД для перехода в экран настроек. Нажмите ВНИЗ или ВВЕРХ для изменения настроек подсветки - яркости и времени задержки. Затем нажмите ВВОД для сохранения.

Нажмите ВНИЗ или ВВЕРХ для изменения требуемых настроек, затем нажмите ВВОД для сохранения. В данном разделе меню вы можете настроить яркость экрана при в рабочем и спящем режиме.

На экране настроек нажмите ВНИЗ или ВВЕРХ для изменения настроек связи.

Нажмите ВВОД для перехода в экран настроек. Нажмите ВНИЗ или ВВЕРХ для изменения

адреса и выбора скорости передачи данных. Затем нажмите ВВОД для сохранения.

Конкретный процесс показан ниже:

Примечание: диапазон адресов связи составляет 1-255, данный прибор поддерживает четыре скорости передачи данных (4800, 9600, 19200, 38400), протокол MODBUS RUT

VII.Стандартные заводские настройки

Меню	Диапазон настройки	По умолчанию		
Тип электрода	РН/ОВП/Сурьмяный	рН		
Температурная компенсация	Ручной/Авто	Ручной		
MTC	0 ~ 100 °C	25 C		
Высокое	pH: 0,00 ~ 14,00 pH	pH: 12,00 pH		
зарегистрированно е значение триггера	ОВП: - 1999 ∼ + 1999 мВ	ОВП: + 900 мВ		
Высокий	pH: 0,00 ~14,00 pH	рН: 1,00 рН		
зарегистрированн ый гистерезис	ОВП: 0 ~ +1999 мВ	ОВП: 100 мВ		
Низкое	pH÷0,00 ~ 14,00 pH	pH: 2,00 pH		
зарегиштрированно е значение триггера	ОВП: -1999 - +1999 иВ	OBFI: - 900 MB		
Низкий	pH: 0,00 ~ 14,00 pH	pH: 1,00 pH		
зарегистрированн ый гистерезис	ОВП: 0 ~ +1999 мВ	ОВП: 100 мВ		
4 мА	pH: 0,00 ~ 14,00 pH	pH: 0,00 pH		
соответствующее значение	ОВП: - 1999 ∼ + 1999 мВ	ОВП: - 1999 мВ		
20 мА	pH: 0,00 ~ 14,00 pH	pH: 14,00 pH		
соответствующее значение	ОВП: - 1999 ∼ + 1999 мВ	ОВП: + 1999 мВ		
Пароль	0 ~ 9999	0000 (6666 для обычного пароля)		
Высокая яркость подсветки	1 ~ 99%	100%		
Низкая яркость подсветки	1 ~ 99%	10%		
Время задержки подсветки	10 ~ 99 сек	50 сек		
Голосовая тревога	Открыть/закрыть	Открыть		

VIII.Обслуживание

В нормальных условиях передатчик не нуждается в каком-либо техническом обслуживании, единственный электрод нуждается в регулярной очистке и коррекции, чтобы обеспечить точное и стабильное измерение значения и поддержания нормального состояния системы. Период очистки электрода зависит от степени загрязненности воды и, в общем, рекомендуется производить чистку и обслуживание каждую неделю: в следующей таблице приведены различные виды загрязнений, чистящие жидкости, указанные в комментариях, представлены для справки оператору по уборке и обслуживанию:

Тип загрязнения	Метод очистки		
Тестовый раствор, содержащий белок, приводящий к загрязнению электродной мембраны			
Загрязнение сульфидом (диафрагма электрода до черного цвета)	Электрод был погружен в раствор тиомочевины с соляной кислотой, и электродная мембрана стала белой.		
Загрязнение маслами или органическими веществами	Очистите электрод ацетоном или этанолом (чистить следует в течение нескольких секунд).		
Загрязнение общего характера	Используйте 0,1 M NaOH или 0,1 M HCl для очистки электрода. Продолжительность чистки - несколько минут.		

При использовании вышеуказанного метода после очистки электрода, пожалуйста, тщательно промойте его чистой водой, поместите электрод в раствор 3MOL КС L примерно на пятнадцать минут, затем повторите коррекцию электрода.

В процессе очистки электрода не протирайте стеклянную головку датчика и не проводите механическую очистку электрода, так как это может привести к статическим помехам и повлиять на реакцию электрода.

Чистку платиновых электродов следует проводить проточной водой. Очищенные электроды следует протереть тонкой полотнямой такиною.

Примечание: цикл очистки электрода зависит от степени загрязненности воды. Обычно рекомендуется чистить и корректировать, по крайней мере, один раз в неделю. Или в соответствии с инструкцией по эксплуатации электрода и оригинальной заводской рекомендацией по его очистке.

Прибор также рекомендуется чистить и корректировать в соответствии с руководством по эксплуатации электрода и рекомендациями заводаизготовителя по очистке электродов.

Графики

Адрес	Адрес (НЕХ)	Описание	БИТ	Тип	Диапаз он	Инструкция	По умолчан ию	Согласование сигналов
50	0x32	Ниж. предел сигнала	1	ЧТЕНИЕ	0/1	Действ.	0	1 триггер
51	0x33	Верх. предел сигнала	1	чтение	0/1	Действ.	0	1 тригтер
52	0x34	ph/овп - МА ниж. сигнал	1	чтение	0/1	Действ.	0	1 триггер
53	0x35	рһ/овп - МА верх. сигнал	1	чтение	0/1	Действ.	0	1 тригтер
54	0x36	°C - МА ниж. сигнал	1	ЧТЕНИЕ	0/1	Действ.	0	1 триггер
55	0x37	°C - MA верх. сигнал	1	ЧТЕНИЕ	0/1	Действ.	0	1 триггер
56	0x38	выход ph/овп за пределы диапазона	1	чтение	0/1	Действ.	0	1 тригтер
57	0x39	Выход С за пределы диапазона	1	ЧТЕНИ	OX 1	Действ.	0	григтер
58	0x3A	Дейстние реле 1		ТЕПИЕ/ А ПИСЬ	0/1	Действ.	0	0 иткрыто,1 акрыто
59	0x3B	Действие реле 2	1	ЧТЕНИЕ/ЗА ПИСЬ	0/1	Действ.	0	0 открыто,1 закрыто

Адрес	Адрес (НЕХ)	Описание	БИТ	Тип	Диапазон	Инструкци я	По умолча нию	Согласование сигналов
102	0x66	Адрес устройства	2	ЧТЕНИЕ	1-255		1	1: 1
103	0x67	Скорость передачи	2	ЧТЕНИЕ	0-3		2	1: 1
104	0x68	Модель устройства	6	чтение	RP1500			ASCii
105	0x69	рһ/овп - МА верх. сигнал	1	чтение	0/1			ASCii
106	0x6A	°C - МА ниж. сигнал	1	ЧТЕНИЕ	0/1			ASCii
107	0x6B	Язык системы	2	ЧТЕНИЕ/ЗАПИСЬ	0 /1		0	1: 1
108	0x6C	Режим измерения канала 1	2	чтение/запись	0-2		0	1: 1
109	0x6D	Режим измерения канала 2	2	чтение/запись	0-2		0	1: 1
110	0x6E	Режим температуры	2	чтение/запись	0-1		0	1: 1
111	0x6F	Ручное выставление температуры	2	ЧТЕНИЕ/ЗАПИСЬ	-1000— +1000		250	10: 1
112	0X70	Автоматическое смещение температуры	2	ЧТЕНИЕ/ЗАПИСЬ	-1000— +1000		0	10: 1
113	0X71	Коэффициент компенсации те ипературы	2	чтение/запись			0	100: 1
114	0X72	Минута	2	- ЧТІНИН	0—59		0	1.1
115	0X73	Чт	2	ЧТЕНИЕ	0—11		0	1:1
116	0X74	День	2	ЧТЕНИЕ	1—31		1	1: 1
117	0X75	Месяц	2	чтение	1—12		1	1: 1
118	0X76	Год	2	чтение	1—12		2000	1: 1
119	0X77	Пароль системы	2	чтение/запись	0000— 9999		0000	1: 1
120	0X78	Режим работы реле 1	2	чтение/ЗАПИСЬ	0-1		0	1: 1
121	0X79	Высокое значение триггера РН Реле 1	2	ЧТЕНИЕ/ЗАПИСЬ	0—1400		1000	100: 1
122	0X7A	Низкое значение триггера РН Реле 1	2	ЧТЕНИЕ/ЗАПИСЬ	0—1400		400	100: 1
123	0X7B	Высокое значение триггера ОВП Реле 1	2	ЧТЕНИЕ/ЗАПИСЬ	-2000— +2000		1000	1: 1
124	0X7C	РН значение триггера ОВП Реле 1	2	ЧТЕНИЕ/ЗАПИСЬ	-2000— +2000		-1000	1: 1
125	0X7D	Значение гистерезиса РН Реле 1	2	ЧТЕНИЕ/ЗАПИСЬ	0—1400		50	100: 1
126	0X 7E	Значение гистерезиса ОВП Реле 1	2	чтение/запись	-2000— +2000		100	1: 1

127	0X7F	Режим работы реле 2	2	ЧТЕНИЕ/ЗАП ИСЬ	0-1		1	1: 1
128	0X80	Высокое значение тригтера РН Реле 2	2	ЧТЕНИЕ/ЗАП ИСЬ	0—1400		1000	100: 1
129	0X8 1	Низкое значение тригтера РН Реле 2	2	ЧТЕНИЕ/ЗАП ИСЬ	0—1400		400	100: 1
130	0X82	Высокое значение тригтера ОВП Реле 2	2	ЧТЕНИЕ/ЗАП ИСЬ	-2000—+2000		1000	1: 1
131	0X83	РН значение тригтера ОВП Реле 2	2	ЧТЕНИЕ/ЗАП ИСЬ	-2000—+2000		-1000	1: 1
132	0X84	Значение гистерезиса РН Реле 2	2	ЧТЕНИЕ/ЗАП ИСЬ	0—1400		50	100: 1
133	0X85	Значение гистерезиса ОВП Реле 2	2	ЧТЕНИЕ/ЗАП ИСЬ	-2000—+2000		100	1: 1
134	0X86	РН-20 мА соответствующее значение	2	ЧТЕНИЕ/ЗАП ИСЬ	0-1400		1400	100: 1
135	0X87	РН-4 мА соответствующее значение	2	ЧТЕНИЕ/ЗАП ИСЬ	0-1400		0	100: 1
136	0X88	ОВП-20 мА сротил ствущиее значение	٨	ЧТЕНИЕ/ЗАП ИСЬ	-2000—+2000	- F	2000	1:1
137	UX89	ВП— мА сотв тс у щее значение	2	ТЕНИЕ ЗАП ИСЬ	-2000-2000	7.0	-2000	1:1
138	0X8A	С-20 мА соответствующее значение	2	ЧТЕНИЕ/ЗАП ИСЬ	100 C		1000	10: 1
139	0X8B	°С-4 мА соответствующее значение	2	ЧТЕНИЕ/ЗАП ИСЬ	0°C		0	10: 1
140	0X8C	Время задержки подсветки	2	ЧТЕНИЕ/ЗАП ИСЬ	10-60		60	1: 1
141	0X8D	Подсветка высокой яркости в процентах	2	ЧТЕНИЕ/ЗАП ИСЬ	10-99		99	100: 1
142	0X8E	Подсветка низкой яркости в процентах	2	ЧТЕНИЕ/ЗАП ИСЬ	10-99		10	100: 1
143	0X8F							
144	0X90							
145		Измеренный номер канала	2	ЧТЕНИЕ	0/1		1	1; 1

146	0X92			чтение		Определяется по шаблонам измерений	и ч	ASCii
147	0X93	Единицы канала 1	6	чтение		Определяется по шаблонам измерений	11 11	ASCii
148	0X94			чтение		Определяется по шаблонам измерений	"рН" или "мВ"	ASCii
149	0X95			чтение		Определяется по шаблонам измерений	11 11	ASCii
150	0X96	Единицы канала 2	6	чтение		Определяется по шаблонам измерений	н ч	ASCii
151	0X97			чтение		Определяется по шаблонам измерений	11	ASCii
152	0X98	Измерение значений канала 1	2	чтение		Определяется		100: 1 или 1: 1
153	0X99	Измерение значений канала 2	2	чтение		Определяется по шаблонам измерений		100: 1 или 1: 1
154	0X9A	Значение температуры	2	чтение	-100+100			10: 1
155	0X9B	Значение коррекции ОВП канала 1	2	ЧТЕНИЕ/ЗАП ИСЪ	-2000—2000			1: 1
156	0X9C	Значение коррекции ОВП канала 2	2	ЧТЕНИЕ/ЗАП ИСЬ	-2000—2000	SP	O	1: 1
157	0X9D	Значение коррекции РН канала 1	2	ЧТЕНИЕ/ЗАП ИСЬ	0-1400	J. I	-	100: 1
158	0X9E	Значение коррекции РН канала 2	2	ЧТЕНИЕ/ЗАП ИСЬ	0-1400			100: 1
159	0X9F	Значение тока на выходе канала 1	2	ЧТЕНИЕ/ЗАП ИСЬ	400—2000			100: 1
160	0XA0	Значение тока на выходе канала 2	2	ЧТЕНИЕ/ЗАП ИСЬ	400—2000			100: 1
161	0XA1	Статус реле 1	2	чтение	0-1			0 открыто, 1 закрыто
162	0XA2	Статус реле 2	2	чтение	0-1			0 открыто, 1 закрыто

	Код	функции 01Н, форм	Инструкция	
	Тип	Кол-во битов	Пример	
Подчине	енный адрес	1	01H	
Код	функции	1	01H	Эта функция считывает
Область	Начальный адрес	2	0032Н	последовательные дискретные состояния от удаленных устройств и не поддерживает
данных	Дискретное количество	2	0002Н	широковещательную передачу.
Проверка CRC		2	1C04H	

Код функции 01Н, формат ответа				Инструкция
Тип		Кол-во битов	Пример	
Подчиненный адрес		1	01H	В ответ на дискретные значения,
Код функции		1	01H	
Область	Кол-во байтов	1	01H	если чтение не кратно 8, оставшиеся биты заменяются на 0.
данных	Дискретное количество	Кол-во байтов	02H	
Проверка CRC		2	D049H	

	Код	функции 03Н, форм	Инструкция	
Тип		Кол-во битов	Пример	
Подчиненный адрес		Подчиненный адрес	01H	
Код	функции	Код функции	03H	Эта функция считывает непрерывное 16-битное значение
Область данных	Натальный адр с Дискретнов количество		008CH 0001H	регистра с удаленного устройства и на поддерживает и ирокопещательную поредачу.
Проверка CRC		2	45E1H	

Код функции 03Н, формат ответа				Инструкция
Тип		Кол-во битов	Пример	
Подчиненный адрес		1	01H	
Код функции		1	03H	П
05	Кол-во байтов	1	02H	Подробный ответ показан в регистрационных таблицах.
Область данных	Дискретное количество	Кол-во байтов	003CH	
Проверка CRC		2	B855H	

	Код ф	ункции 06Н, форм	Инструкция	
Тип		Кол-во битов	Пример	
Подчин	енный адрес	1	01H	
Код	функции	1	06H	Функция записывает 16-битное значение регистра на удаленное устройство.
Область	Начальный адрес	2	008CH	
данных	Значение регистра	2	003CH	
Проверка CRC		2	4830H	

	Код	функции 06Н, фор	Инструкция	
Тип		Кол-во битов	Пример	
Подчиненный адрес		1	01H	
Код функции		1	0 6H	
	Начальный	2	008CH	Обычный формат ответа - это копия
	адрес		000011	запроса.
Область	Значение	2.	003CH	
данных	регистра		003C11	
Проверка CRC		2	4830H	

Φ	ормат ответа искл	Инструкция	
Тип	Кол-во битов	Пример	Подчиненный адрес Верхняя
Подчиненный адрес	1	01H	позиция 1
Код функции	1	86H	01: Недопустимый код функции 02:
Код исключения		U3H	Педопустим ий идпес данных, бит 03:
Проверка CRC		261 [Недопустимы данны
	IDI	7-7 1/71	D.I Ψ

Код функции 05Н, формат отправки				Инструкция
Тип		Кол-во битов	Пример	
Подчине	енный адрес	1	01H	
Код	функции	1	05H	
Область данных	Начальный адрес	2	003AH	Функция записывает дискретную сумму на удаленное устройство.
	Дискретное количество	2	FF00H	
Проверка CRC		2	AC37H	

Код функции 05Н, формат ответа				Инструкция
Тип		Кол-во битов	Пример	
Подчиненный адрес		1	0 1H	
Код	функции	1	05H	
Область	Начальный адрес	2	003AH	Обычный формат ответа - это копия запроса.
данных	Дискретное количество	2	FF00H	
Проверка CRC		2	AC37H	

Архангельск (8182)63-90-72 Астана (7172)727-132 Астарахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемеров (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноррск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Киргизия (996)312-96-26-47 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Казахстан (772)734-952-31 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смопенск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Таджикистан (992)427-82-92-69 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

https://aqualab.nt-rt.ru || auq@nt-rt.ru

АКВА-ЛАБ.РФ