Кондуктометры AQ-EC150-RS485

Руководство по эксплуатации

По вопросам продаж и поддержки обращайтесь:

Алматы (727)345-47-04 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Волоград (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89

Россия +7(495)268-04-70

Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81

Казахстан +7(727)345-47-04

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47

Беларусь +375-257-127-884

Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Саранск (8342)22-96-24 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35

Узбекистан +998(71)205-18-59

Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Киргизия +996(312)96-26-47

Каталог

I Общее описание	4
II Комбинация и установка	5
2.1 Установленный основной двигатель (монтаж пане	
2.2 Справочный чертеж монтажа на панели	5
2.3 Установка электрода	
III Электрод и электропроводка	
3.1 Схема панели с задней проводкой	
3.2 Схема неподвижной группы размыкающих конта	ктов11
3.3 Описание клеммного контакта	
объединительной платы	11,12
IV Описание панели	13
4.1 Описание панели	13
4.2 Описание клавиш	13
4.3 Описание дисплея	
V Описание меню	15
5.1 Системные настройки	16
5.2 Настройка датчика	
5.3 Настройка вывода	
VI Калибровка	
VII Техническое обслуживание	23
VIII Заводская настройка по умолчанию	
Контактная информация	

І Общее описание

Настоящий тип анализатора проводимости/сопротивления является новым изделием. Этот прибор обладает высоким уровнем искусственного интеллекта и гибкости. Он может одновременно измерять величину проводимости/сопротивления и температуру. Прибор широко используется в городских станциях очистки сточных вод, водоснабжении и других отраслях промышленности, и может постоянно измерять величину проводимости/сопротивления раствора.

Основные функции

- 1. Языковое разнообразие. По умолчанию на заводе устанавливается интерфейс на китайском языке, который можно переключить на английский язык.
- 2. Разнообразие средств для компенсации температуры. Доступны три режима компенсации температуры: PT1000, NTC10K и ручная компенсация.
- 3. Два выхода 4-20 мА, соответствующие значению проводимости / сопротивления и температуре, с использованием технологии изоляции, с сильной защитой от помех
- 4. Верхняя и нижняя точки двух наборов реле могут свободно переключаться, а гистерезис можно свободно регулировать, что позволяет избежать частого включения и выключения реле.
- 5. Функция защиты паролем позволяет предотвратить использование прибора непрофессиональным персоналом.
- 6. Функция подсказки в меню значительно помогает при использовании прибора.

Технические параметры прибора

Измерительный диапазон: $0.05 \text{ мкСм/см} - 200 \text{ мкСм/см} 0.00 \text{ МОм/см} \sim 20.00 \text{ МОм/см}$

Точность: +0,01 мкСм/см Разрешение: 0,01 мкСм/см

Температурная компенсация: 0-100 °C ручной/автоматический режим (РТ1000/NТС10К) Выход сигнала: Выход защиты изоляции 4-20 мА, независимо от соответствующего РН / ORP или температуры, максимальная нагрузка 500 Ом

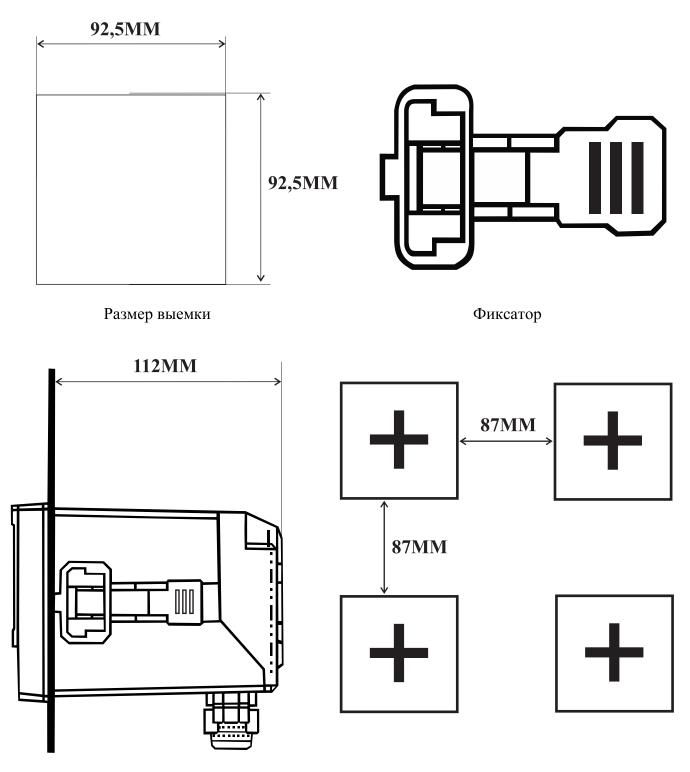
Выход сигнализации: две группы могут случайным образом соответствовать тревоге высокой и низкой точки (3 A/250 В переменного тока), реле с нормально разомкнутыми контактами.

Источник питания: AC 100-240 В или DC 24 В.

Потребляемая мощность: ≤5 Вт

Условия окружающей среды: (1) температура $0 \sim 60$ °C (2) влажность $\leq 85\%$ отн.влаж.

Размеры: 96x96x132 мм (ВхШхГ)

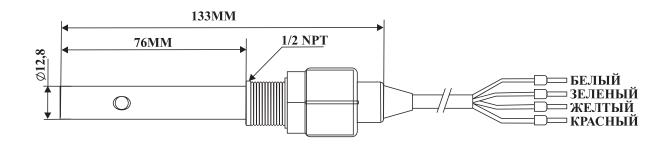

Размер отверстия: 92,5х92,5 мм (ВхШ)

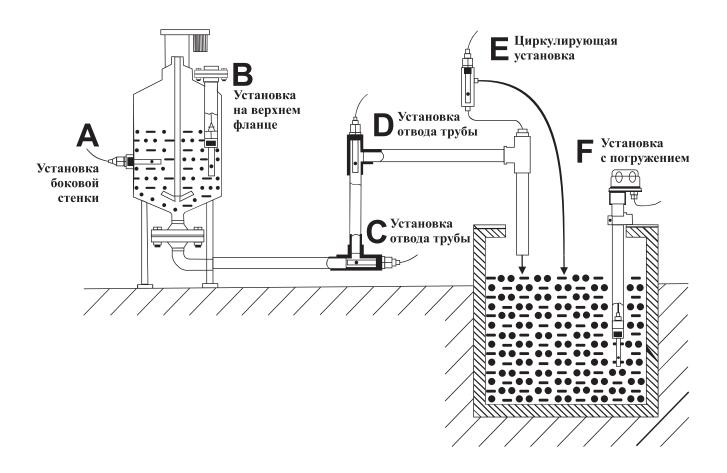
II Комбинация и установка

2.1 Установленный основной двигатель

Этот анализатор может устанавливаться на настенную панель.

2.2 Справочный чертеж монтажа на панели

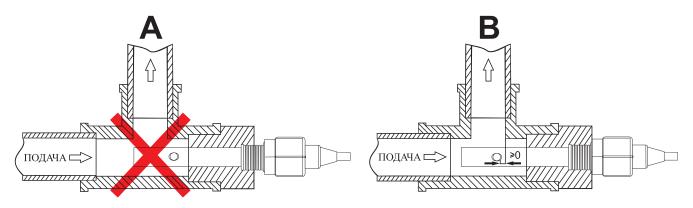


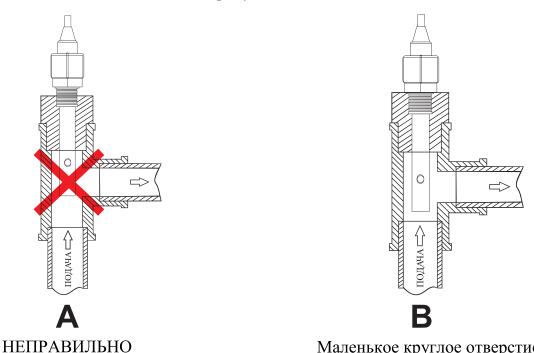

Порядок монтажа шкафа. Крепится при помощи тарельчатого держателя.

Расстояние между квадратными отверстиями распределительной коробки

2.3 Установка электрода

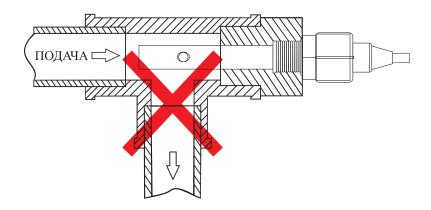
2.3.1 Форма электрода и форма установки




2.3.2 Основные методы установки

Установка датчиков - очень кропотливая работа. При установке датчиков необходимо тщательно выбирать место установки, продумывать методы установки, чтобы избежать искажения данных измерений.

1) Соединение электродов на рисунке А слишком длинное, а удлинительная часть слишком короткая. В датчике легко сформировать мертвую полость, что приведет к ошибке измерения. Датчик должен быть установлен в соответствии с рисунком В (уходить вглубь направления воды = ПОТОК)

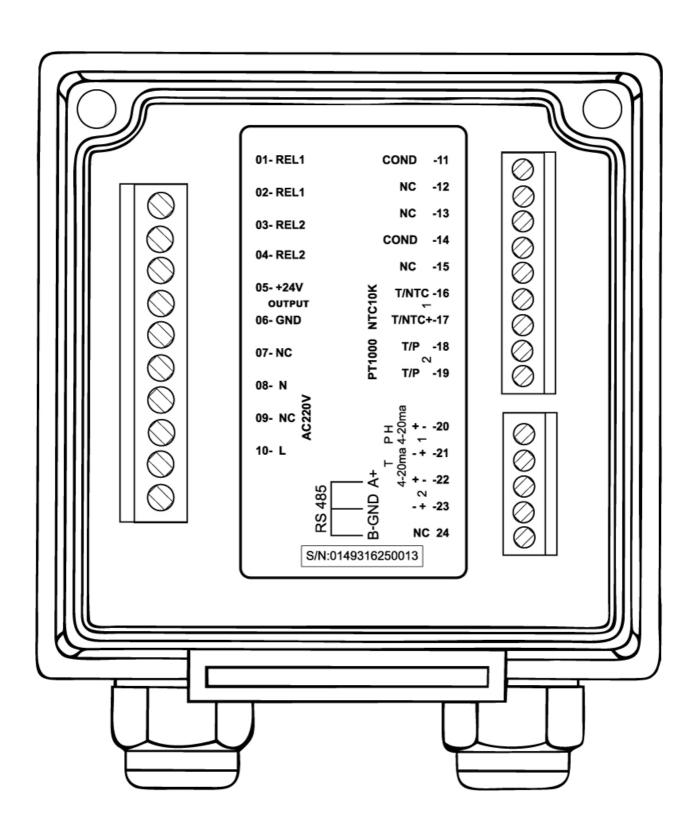


2) Режим установки А приведет к образованию воздушной полости в кондуктометрической ячейке, что приведет к ошибкам измерения и нестабильности, и его следует устанавливать, как показано на рисунке В.

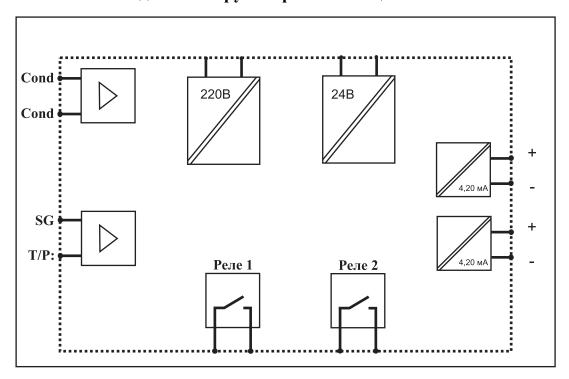
Маленькое круглое отверстие кондуктометрической ячейки находится в выпускном окне для воды.

3) Другие распространенные неправильные методы установки:

Ошибка измерения или нестабильность могут быть вызваны тем, что поток не может гарантировать заполнение трубы или высокое скопление газа.


2.3.3 Меры предосторожности при установке и техническое обслуживание

- 1) Проточная ячейка должна быть установлена в трубопроводе, где скорость потока стабильна и образование пузырьков затруднено. Ее можно установить на пути бокового потока, чтобы избежать неточных измерений.
- 2) Концентрический трубчатый электрод в мягкой обложке, наклонная или вертикальная установка должен быть установлен в направлении ПОТОКА и глубоко в потоке воды. Электроды другой формы устраняют давление рассеивания из-за турбулентности в измерительной камере при установке электродов со стороны направления и вызывают искажения данных измерения.
- 3) Сигнал измерения это слабый сигнал, кабель должен быть независимым от линии. Запрещается соединение с линией питания и линией управления в одной и той же группе кабельных соединителей или клеммных колодок. Также запрещается привязывать трубу к линии питания и линии управления. Следует избегать вмешательства в измерение или повреждений, ведущих к поломкам измерительного блока прибора.
- 4) Кабель электрода имеет стандартную длину и перед отгрузкой с завода оснащается специальным кабелем. Если измерительный кабель необходимо удлинить, согласуйте поставку с производителем.


- 5) При установке держите измерительную часть электрода в чистоте. Не касайтесь поверхности непосредственно руками или грязными объектами. После контакта с жирной грязью, жиром и клеем в течение длительного времени будет невозможно измерить точное значение.
- 6) Ячейка для измерения проводимости является точным измерительным элементом. Ее нельзя разбирать и изменять форму и размер электрода. Ее нельзя чистить, замачивать и механически чистить с помощью сильной кислоты или щелочи. Эти операции приведут к изменению постоянной электрода и повлияют на точность системы измерения.
- 7) Измерительный кабель представляет собой специальный кабель. Другие параметры кабеля не подлежат самовольному изменению. Все неправильные изменения и изменения без разрешения приведут к ошибочным измерениям.
- 8) Прибор состоит из прецизионных интегральных схем и электронных компонентов. Не допускайте попадания прямых солнечных лучей. Кабель следует поместить в сухую среду или в блок управления, чтобы избежать утечки или ошибок измерения, вызванных разбрызгиванием капель воды или влажностью.
- 9) Чтобы обеспечить безопасную работу установки, питание следует подключать после надлежащей проверки установки.

III Электрод и электропроводка

3.1 Схема панели с задней проводкой

3.2 Схема неподвижной группы размыкающих контактов

3.3 Описание клеммного контакта объединительной платы

01 REL1: Первый контроль сигнала тревоги, внешнее реле

02 REL1: Первый контроль сигнала тревоги, внешнее реле

03 REL2: Второй контроль сигнала тревоги, внешнее реле

04 REL3: Второй контроль сигнала тревоги, внешнее реле

05 DC:DC+24В выход

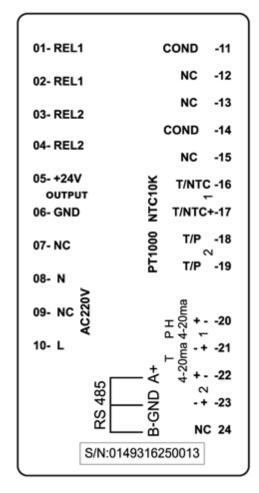
06 DC:DC-24B выход

07 NC:NC

08 AC: источник электропитания 220 В AC (L)

09 NC:NC

10 AC: источник электропитания 220 В AC (N)


11 Cond1: синий провод электрода проводимости

12 NC: NC 13 NC:NC

14 Cond2: белый провод электрода проводимости

15 NC: NC

16 T/NTC:NTC10K интерфейс температуры и сопротивления 1 17 T/NTC: NTC10K интерфейс температуры и сопротивления 2

18 Т/Р: РТ1000 интерфейс температуры и сопротивления 1

19 Т/Р: РТ1000 интерфейс температуры и сопротивления 2

20 Cond-ma (+): положительный конец выхода тока проводимости 21 Cond-ma (-): отрицательный конец выхода тока проводимости

22 Т-ma (+): положительный конец выхода температурного тока / разъем RS485 A

23 Т-та (-): Отрицательный конец выхода по току температуры

24 соединитель NC:NC /RS485 B

Примечание: Этот инструмент поддерживает две группы 4-20 мА или одну группу 4-20 мА и одну группу RS485.

AC: 100~240 В переменного тока ±10% 50/60 Гц;

DC: 12-24 B;

Мощность: 5 Вт;

Реле: Выдерживаемое напряжение 240 В, максимальный ток 0,5 А

Выходной ток: 500 Ом максимальное сопротивление

Проводка цепи управления сигнализации

Соединение электрода

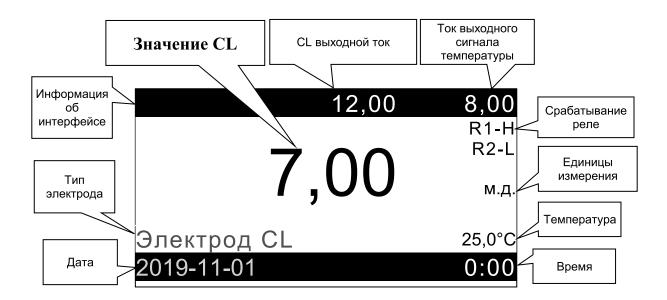
IV Описание панели

4.1 Описание панели

4.2 Описание клавиш

Чтобы избежать возможности доступа к прибору необученного персонала, включите защиту паролем при настройке параметров и внесении поправок. Ниже приведено описание каждой функции:

запустите интерфейс настройки в режиме измерения, вернитесь в предыдущее меню под интерфейсом настройки.


- Переключение и числовая настройка меню в интерфейсе настройки.
- Переключение и числовая настройка меню в интерфейсе настройки.

• Просмотрите архивную информацию о сигналах тревоги в режиме измерения, войдите в меню следующего уровня в интерфейсе настройки и нажмите горячую клавишу интерфейса информации о сигналах тревоги.

Ввести: Просмотрите основные параметры в режиме измерения. Интерфейс настройки используется для входа в меню следующего уровня, горячая клавиша интерфейса системной информации.

4.3 Описание дисплея

Дисплей в режиме измерения выглядит следующим образом:

Описание работы индикаторов:

R1: индикатор действия реле 1, высокий уровень отображает красный свет, низкий уровень - зеленый свет.

R2: индикатор действия реле 2, высокий уровень показывает красный свет, низкий уровень - <u>зеленый свет.</u>

На рисунке выше показан интерфейс отображения системной информации и информации о сигналах тревоги.

Системная информация: Все параметры установки прибора показаны в информации о системе. Нажмите Enter для входа в интерфейс системной информации. Информация о срабатывании сигнализации: В памяти устройства могут храниться до 60 записей аварийного срабатывания реле. Нажмите кнопку для входа в интерфейс информации об аварийных сигналах.

V Описание меню

Меню анализатора разделено на четыре меню первого уровня (с разбивкой на функции), и каждое меню первого уровня включает одно или два подменю. Каждое меню пронумеровано с целью легкого просмотра и установки параметров метра. Кроме того, во вторичном меню будут отображаться параметры настройки прибора нижнего меню в соответствии с функцией в правом верхнем углу экрана, и пользователь может узнать параметры прибора, не входя в нижнее меню.

Главное меню включает четыре меню первого уровня:

1. Системные настройки

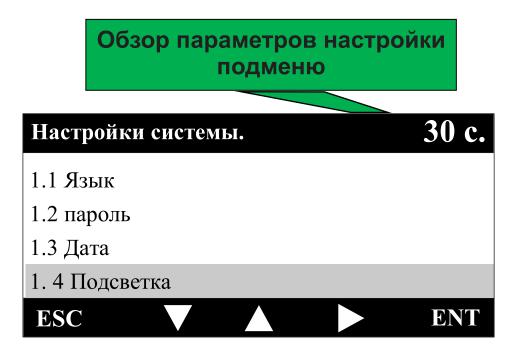
Системные параметры настройки прибора включают язык, пароль, дату, подсветку и т.д.

2. Настройка датчика

Включает режим отображения, калибровку, цифровую фильтрацию, температурный режим, регулировку температуры и компенсацию.

3. Настройка вывода

Включая реле 1, реле 2 и два параметра 4-20 мА.


4. Сброс к заводским настройкам

Включая настройку восстановления и восстановления данных о сигнализации.

Функция подсказки в меню

Войдите во вторичное меню, и настройки параметров для следующего меню будут отображаться в правом верхнем углу экрана.

Например, войдите в меню настройки системы подсветки, параметр подсветки выставлен на 30 секунд.

5.1 Системные настройки

Меню 1.1 Язык

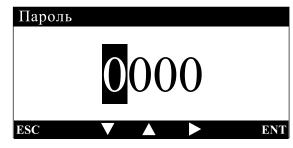
Прибор имеет интерфейс на китайском и английском языке. Переключение между языками не требует особых действий.

Например: выберите упрощенный китайский и нажмите клавишу Enter для подтверждения, весь интерфейс дисплея прибора будет изменен на упрощенный китайский язык.

Примечание: Чтобы избежать неправильных действий пользователя, после выбора параметра и нажатия клавиши Enter внизу экрана появятся четыре подсказки «ESC», «OK», «NO» и «ENT», соответствующие к четырем кнопкам прибора. Пользователю необходимо еще раз подтвердить, что параметр выбран правильно. Для подтверждения нажмите ▼, что означает ОК, в противном случае нажмите ▲, что означает NO.

Язык

1.1.1. Английский


OK

HIBIT

1.1.2 简体中文

Меню 1.2 Пароль

Пароль по умолчанию — 0000. Мы можем изменить пароль в соответствии с вашими потребностями. После смены пароля пользователь будет должен вводить новый пароль для входа в меню настройки.

zh

ENT

Меню 1.3 Дата

Это меню состоит из двух подменю.

- 1.3.1 Формат даты
- 1.3.2 Настройка даты

Меню 1.3.1 Формат даты

Прибор поддерживает выбор из трех форматов даты, и вы можете выбрать подходящий формат даты в соответствии с вашими потребностями.

	Формат	даты	Год-месяц-д	цень
	1. 3.1.1	Год-месяц-	день	
	1.3.1.2	День-меся	ц-год	
,	1.3.1.3	Месяц-дені	ь-год	
	ESC			ENT

Меню 1.3.2 Настройка даты

Для настройки года, месяца, дня, часа, минут войдите в меню настройки даты. Системное время прибора будет автоматически изменено после правильной настройки даты.

Меню 1.4 Подсветка

Прибор имеет четыре значения затухания подсветки. Пользователь может настроить затухание подсветки согласно своим нуждам. По истечении времени затухания подсветки экран потемнеет.

Подсветка			30c
1.4.1 30c			
1.4.2 60c			
1.4.3 120c			
1.4.4 Всегда			
ESC	\bigvee		ENT

5.2 Настройка датчика

Меню 2.1 Режим отображения

Этот прибор поддерживает 6 режимов отображения, каждый режим отображения представляет разную точность измерения и предполагает выбор разных единиц измерения.

Примечания:

20,00 м.д.: Диапазон измерения - **0,00-20. 00 м.д.**, единица измерения - **м.д.**

20,00 мг/л: Диапазон измерения - **0,00-20. 00** мг/л, единица измерения - мг/л.

20,0 м.д.: Диапазон измерения - **0,0-20. 0 м.д.**, единица измерения - **м.д.**

20,0мг/л: Диапазон измерения - **0,0-20. 0 мг/л**, единица измерения - **мг/л**.

20 м.д.: Диапазон измерения 0-20 м.д., единица измерения м.д.

20 мг/л: Диапазон измерения 0-20 мг/л, единица измерения мг/л.

Меню 2.2 Настройка коэффициентов

Этот анализатор выбирает подходящий коэффициент электрода в соответствии с диапазоном измерения пробы воды. Коэффициент электродов определяется производителем и может быть настроен для достижения цели коррекции.

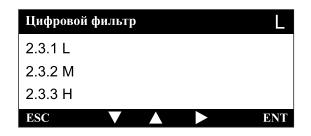
Примечание: Коэффициент проводимости электрода и соответствующий диапазон измерения следующие:

Коэффициент= $0.01 \rightarrow 0.05$ -200,0 мкСм/см

Коэффициент= $0,1 \rightarrow 0,1-2000$ мкСм/см

Коэффициент= $1,0 \rightarrow 1,0-20,00$ мкСм/см

Коэффициент=10,0 → 10-200 мкСм/см


Пользователь должен определить коэффициент электрода перед изменением коэффициента, а затем отрегулировать коэффициент в соответствующем диапазоне регулировки для достижения цели коррекции.

Меню 2.3 Цифровая фильтрация

Измеренное значение измерителя фильтруется посредством усреднения, и поддерживаются три метода цифровой фильтрации.

Низкая точка: в среднем каждые 5 секунд Средняя точка: в среднем каждые 10 секунд Высокая точка: в среднем каждые 20 секунд Примечание: Скорость изменения нижней

Примечание: Скорость изменения нижней точки выше, чем скорость изменения верхней точки.

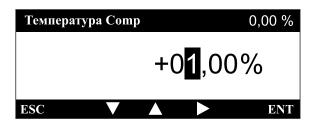
Меню 2.4 Режим температуры

Прибор поддерживает два типа температурной компенсации: PT1000 и NTC10K. Прибор отображает данные в двух форматах: Градусы Цельсия и Фаренгейта.

Примечание 2.4.1 PTC°C: PT1000 температурный зонд, отображение в градусах Цельсия.

- 2.4.2 NTC°C: NTC10K температурный зонд, отображение в градусах Цельсия.
- 2.4.3 МТС°С: ручной режим, отображение в градусах Цельсия.
- 2.4.4 PTF°F: PT1000 температурный зонд, отображение в градусах Фаренгейта.
- 2.4.5 PTF°F: NTC10К температурный зонд, отображение в градусах Фаренгейта.
- 2.4.6 MTF°F: ручной режим, отображение в градусах Фаренгейта

Меню 2.5 Настройка температуры


Регулировка температуры разделена на две части: верхняя часть - это значение регулировки температуры, а нижняя часть - отображаемое значение настроенной температуры. После нажатия клавиши Enter дисплей температуры прибора будет отображать отрегулированное значение.

Меню 2.6 Компенсация

Компенсация включает три подменю

- 2.6.1 Компенсация температуры
- 2.6.2 Компенсация давления воздуха
- 2.6.3 Компенсация содержания соли

Вы можете свободно устанавливать параметр температурной компенсации в соответствии с реальными условиями. После нажатия клавиши Enter измеряемое значение изменится с учетом соответствующего параметра компенсации температуры.

Примечание: Эталонная температура компенсации температуры прибора зафиксирована на уровне 25 °C, а формула расчета:

$$Ct = C25\{1 + a(T-25)\}$$

C25 - это значение DO при 25 °C. α - это коэффициент компенсации температуры: Т - температура испытуемого раствора

Сt - это температура Т °С

5.3 Настройка вывода

Настройки выхода в основном включают реле 1, реле 2 и две настройки 4-20 мА, из которых два 4-20 мА соответствуют измеренным значениям температуры. Ниже в качестве примера приводится реле 1 и 4-20 мА растворенного кислорода.

Меню 3.1 Реле 1

Реле 1 содержит 3 подменю.

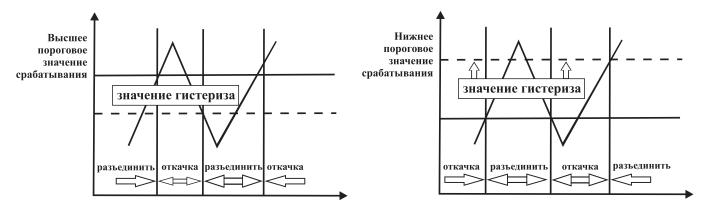
- 3.1.1 Режим Реле 1
- 3.1.2 Значение срабатывания Реле 1
- 3.1.3 Значение гистерезиса Реле 1

Меню 3.1.1 Режим Реле 1

Реле разделяются по трем режимам: выкл., высокий и низкий. Пользователи могут установить соответствующий режим реле в соответствии со своими потребностями, нажмите Enter для подтверждения.

Меню 3.1.2 Значение срабатывания Реле 1

Пользователь может свободно установить значение срабатывания в пределах диапазона, разрешенного измерителем, и нажать Enter для подтверждения.



Меню 3.1.3 Значение гистерезиса Реле 1

Пользователь может свободно установить значение гистерезиса в пределах допустимого диапазона и нажать Enter для подтверждения.

Примечание:

Значение срабатывания сигнализации больше (или меньше). Значение гистерезиса ниже (или больше) снимается. Порядок срабатывания реле следующий:

Меню 3.2 Реле 2

Настройка реле 2 такая же, как и принцип настройки реле 1, см. Настройку реле 1.

Меню 3.3 Электрический ток


Это меню разделено на четыре подменю:

- 3.3.1 Установка электрического тока 1-4ma
- 3.3.2 Установка электрического тока 1-20ma
- 3.3.3 Коррекция электрического тока 1-4ma
- 3.3.4 Коррекция электрического тока 1-20ma

Поскольку порядок настройки и внесения поправок для 4 мА и 20 мА аналогичны, в качестве примера рассматривается порядок настройки и внесения поправок для 4 мА.

Меню 3.3.1 Настройка электрического тока l-4ma

Пользователь может установить текущее значение настройки l-4ma. После нажатия Enter система автоматически сохранит настройки.

Меню 3.3.2 Установка электрического тока 1-20ma

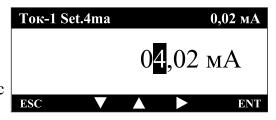
Пользователь может свободно установить текущее значение настройки 1-20 мА. После нажатия Enter система автоматически сохранит настройки.

Примечание: Значение проводимости и значение тока, установленные в диапазоне 4-20 мA, соответствуют друг другу, и формула расчета:

outMa= (20,00-4,00) / (endMa - startMa) * (hold-startMa) + 4,00

outMa - величина выходного тока

startMa - значение проводимости, установленное на 4 мА.


endMa - значение проводимости, установленное на 20 мA.

Hold - текущее измеренное значение

Например, для 4 мА установлено значение 0,00 мкСм/см, для 20 мА установлено значение 20,00 мкСм/см, а при значении проводимости 10,00 мкСм/см выходной ток составляет 12,00 мА.

Меню 3.3.3 Коррекция электрического тока 1-4та

После входа в интерфейс калибровки на экране будет отображаться значение на выводе. Амперметр будет измерять значение выходного тока 1 и настраивать текущее значение на экране так, чтобы оно совпадало с текущим значением, измеренным амперметром.

Меню 3.3.3 Коррекция электрического тока 1-20ma

Порядок настройки тока 20 мА такой же, как у тока 4 мА. Порядок поправки приведен в пункте про 4ma.

Меню 3.4 Электрический ток 2

Порядок настройки тока 2 такой же, как у тока 1. См. данные о Ток 1.

5.4 Сброс к заводским настройкам

Меню 4.1 Восстановление настроек

Нажмите Enter для подтверждения, все настройки параметров прибора будут восстановлены до значений по умолчанию.

Меню 4.2 Восстановление сигнализаций

После нажатия клавиши Enter информация о тревоге будет удалена с прибора.



VI Калибровка

Калибровка настоящего прибора корректируется коэффициентом электрода. Необходимо войти в меню 2.2 «Коэффициенты», выбрать коэффициент электродов как (коэффициент 1,0), погрузить электрод в корректирующую жидкость (например, с проводимостью 1413 мкСм/см).

Отрегулируйте значение коэффициента электрода с помощью / / кнопки (например, установите коэффициент на 0,996), нажмите **Enter** для подтверждения, чтобы измеренное значение и фактическое значение корректирующей жидкости соответствовало коррекции.

	Возможные причины	Метод проверки
1. Без дисплея	А. Питание не включено. В. Неисправность прибора.	А. Проверьте наличие напряжения 220 В между (01) (03)В. Запросите профессиональное техническое обслуживание.
2.Нестабильность отображения	А. Неправильная разводка электродов.В. Пузыри в линииС. Неустойчивое качество водыD. Блок питания имеет сильные помехи.	А. Проверьте кабели В. Исправление трубопроводов или альтернативные точки измерения С. Устранение причин, связанных с прибором, с помощью стабильного источника воды D. ТВ Причины и меры по питанию
3. Ошибки чтения	А. Константа установлена неправильноВ. Изменение констант электродовС. Измерение скорости потока слишком быстрое или застой воды	А. Сброс постоянных величин В. Замена электродов С. Установите электрод с меньшей скоростью потока
4. анализатор этображает значения после выхода электрода из воды	 А. Сниженная проницаемость электродов или изоляции кабеля В. Между электродами есть инородное тело. С. Клеммы подвержены воздействию влаги 	А. Замена новых электродов В. С. Следует узнать причины и разобраться с ними
. Срабатывает игнализация, реле не аботает	А. Реле застревает, Контакты не	А. Замена реле (удаление контактов) В. Неисправность цепи, ремонт

VII Заводская настройка по умолчанию

Название меню	Диапазон настройки	Заводское значение по умолчанию
Измерительное устройство	мкСм/см/мОм/см	мкСм/см
Цифровая фильтрация	Высокий/средний/низкий	Нижняя точка
Компенсация температуры	PTC/NTC/Ручной	Руководство
Ручная компенсация температуры	0,0 ~ 100,0 °C	25,0 евро
Высшее пороговое значение срабатывания сигнализации	0,00 ~ 20,00 мкСм∕см	15,00 мкСм/см
Высшее пороговое значение гистерезиса	0,00 ~ 20,00 мкСм∕см	1,00 мкСм/см
Нижнее пороговое значение срабатывания сигнализации	0,00 ~ 20,00 мкСм∕см	5,00 мкСм/см
Нижнее пороговое значение гистерезиса	0,00 ~ 20,00 мкСм∕см	1,00 мкСм/см
4 мА соответствующее значение	0,00 ~ 20,00 мкСм∕см	+0 мкСм/см
20 мА соответствующее значение	$0,00 \sim 20,00$ мкСм/см	20,00 мкСм/см
пользовательский пароль	0 ~ 9999	0000(общий пароль6666)
Подсветка	30с~Всегда	30 c.

По вопросам продаж и поддержки обращайтесь:

Алматы (727)345-47-04 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Волоград (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89

Россия +7(495)268-04-70

Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81

Казахстан +7(727)345-47-04

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47

Беларусь +375-257-127-884

Севастополь (8692)22-31-93 Саранск (8342)22-96-24 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Сыктывкар (8212)25-95-17

Ростов-на-Дону (863)308-18-15

Санкт-Петербург (812)309-46-40

Рязань (4912)46-61-64

Самара (846)206-03-16

Саратов (845)249-38-78

Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35

Узбекистан +998(71)205-18-59

Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Киргизия +996(312)96-26-47