Промышленные электроды AQ-CHL1

Руководство по эксплуатации

По вопросам продаж и поддержки обращайтесь:

Алматы (727)345-47-04 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Волоград (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89

Россия +7(495)268-04-70

Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Краснодар (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81

Казахстан +7(727)345-47-04

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47

Беларусь +375-257-127-884

Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Саранск (8342)22-96-24 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35

Узбекистан +998(71)205-18-59

Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Киргизия +996(312)96-26-47

Каталог

I Общее описание	4
II Комбинация и установка прибора	
2.1 Установленный основной двигатель(монтаж при	бора)5
2.2 Справочный чертеж для монтажа	5
2.3 Установка электрода	6
III Электрод и электропроводка	7
3.1 Схема панели с задней проводкой	7
3.2 Описание клеммных контактов объединительной	і́ платы8
3.3 Схема неподвижной группы размыкающих конта	актов9
IV Описание панели	10
4.1 Описание панели	10
4.2 Описание нижней панели	10
4.3 Описание дисплея	11
V Описание меню	12
5.1 Системные настройки	13
5.2 Настройка датчика	14,15,16
5.3 Настройка вывода	.17,18,19,20
VI Заводские настройки установленные по умолча	анию21
VII Контактная информация	22

І Общее описание

Настоящий тип анализатора остаточного хлора является новым изделием. Этот прибор обладает высоким уровнем искусственного интеллекта и гибкости. Он может одновременно измерять величину остаточного хлора и температуру.

Прибор широко используется в городских станциях очистки сточных вод, водоснабжении и других отраслях промышленности, и может постоянно измерять величину остаточного хлора раствора.

Основные функции

- 1. Языковое разнообразие. По умолчанию на заводе устанавливается интерфейс на китайском языке, который можно переключить на английский язык.
- 2. Разнообразие средств для компенсации температуры. Доступны три режима компенсации температуры: PT1000, NTC10K и ручная компенсация.
- 3. Два выхода 4-20 мА, соответствующие значению проводимости / сопротивления и температуре, с использованием технологии изоляции, с сильной защитой от помех
- 4. Верхняя и нижняя точки двух наборов реле могут свободно переключаться, а гистерезис можно свободно регулировать, что позволяет избежать частого включения и выключения реле.
- 5. Функция защиты паролем позволяет предотвратить использование прибора непрофессиональным персоналом.
- 6. Функция подсказки в меню значительно помогает при использовании прибора.

Технические параметры прибора

Измерительный диапазон: 0-20 м.д., 0,0-20,0 м.д., 0,00-20,00 м.д.;

Точность: +0,01 м.д.;

Разрешение: +0,01 м.д.;

Стабильность: ≤ 0,02 м.д. /24 ч;

Компенсация температуры: 0-100 °C Ручной/Авто(РТ1000/NTС10К)

Выход сигнала: Выход защиты изоляции 4-20 мА, независимо от соответствующего остаточного хлора или температуры, максимальная нагрузка 500 Ом.

Выход сигнализации: две группы могут случайным образом соответствовать тревоге высокой и низкой точки (3 A/250 В переменного тока), реле с нормально разомкнутыми контактами.

Источник питания: AC100-240V или DC24V.

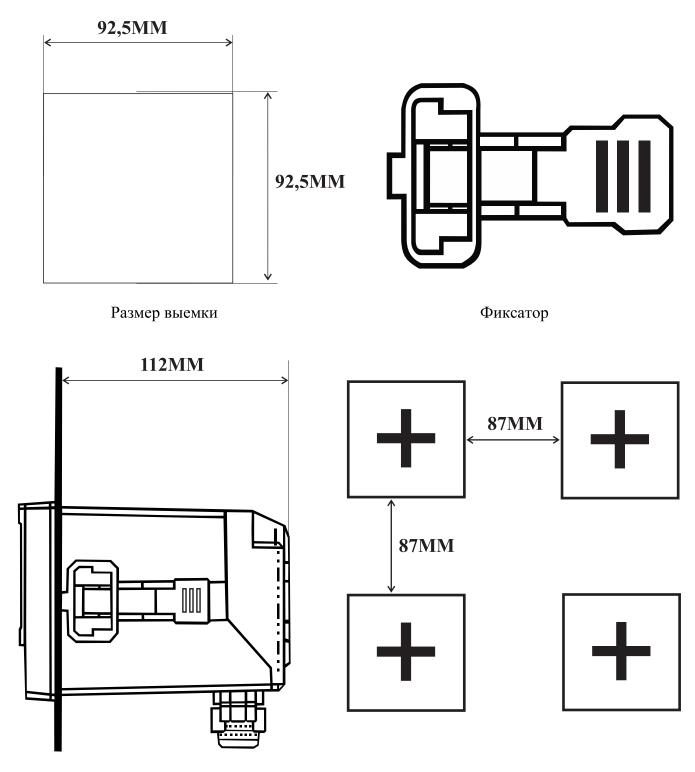
Потребляемая мощность: ≤5 Вт

Условия окружающей среды: (1) температура $0 \sim 60$ °C (2) влажность $\leq 85\%$

отн.влаж.

Размеры: 96x96x132 мм (ВхШхГ)

Размер отверстия: 92,5х92,5 мм (ВхШ)

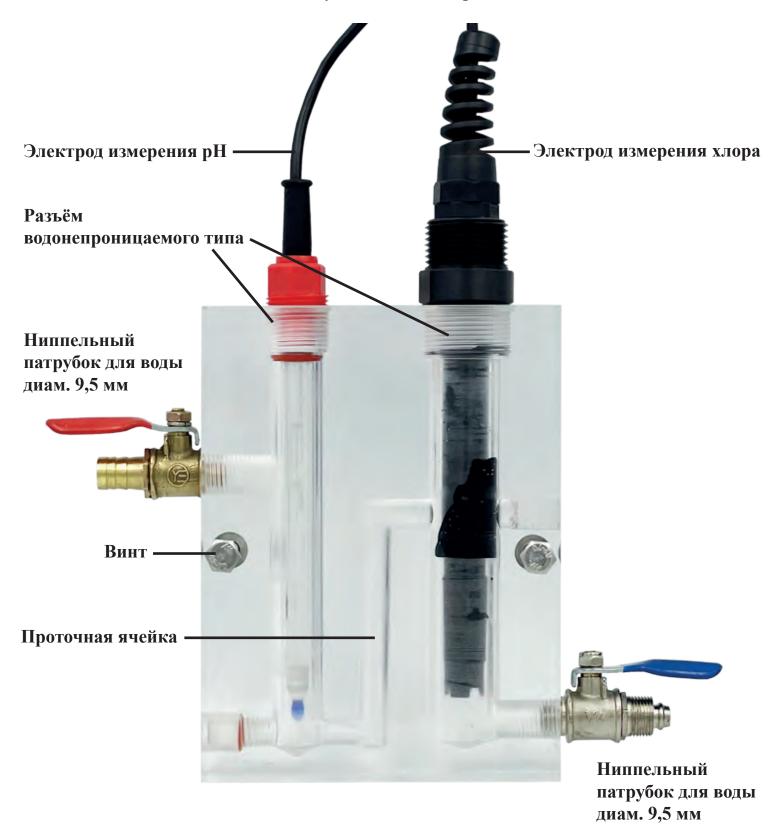

Защита: ІР65

II Комбинация и установка

2.1 Установленный основной двигатель

Этот анализатор может устанавливаться на настенную панель.

2.2 Справочный чертеж для монтажа на панели



Порядок монтажа шкафа. Крепится при помощи тарельчатого держателя.

Расстояние между квадратными отверстиями распределительной коробки

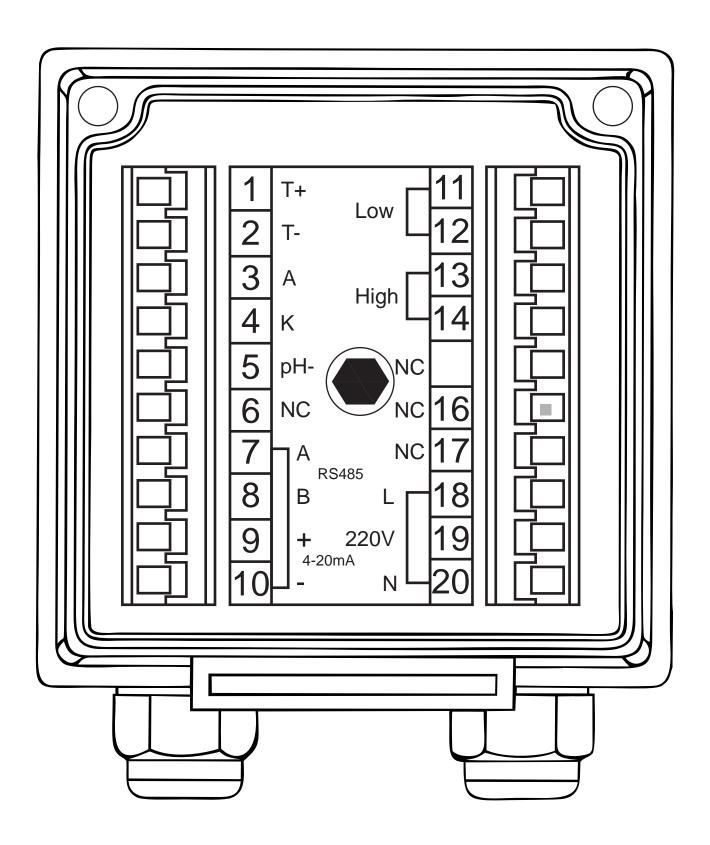

2.3 Установка электрода

Схема установки электрода

III Электрод и электропроводка

3.1 Схема панели проводки сзади

3.2 Описание клеммных контактов объединительной платы

1 Т+: температура

2 Т-: температура

3 А: электрод остаточного хлора

4 К: электрод остаточного хлора

5 рН-: водородный показатель рН-

6 NC: без соединения

7 A RS485

8 B RS485

9 + 4-20mA CL токовый выход+

10 - 4-20mA CL токовый выход-

11 Внешнее реле нижнее значение

12 Внешнее реле нижнее значение

13 Внешнее реле высшее значение

14 Внешнее реле высшее значение

15 NC: без соединения

16 NC: без соединения

17 NC: без соединения

18 L Источник питания АС 220 В

19 Земля

20 N Источник питания АС 220 В

Шестигранник: водородный показатель рН+

Примечание: Вход переменного тока: 100~240 В переменного тока + 10%, частота 50/60 Гц;

DC: 12-24 B;

Мощность: 5 Вт;

Реле: Выдерживаемое напряжение 240 В, максимальный ток 0,5 А

Выходной ток: 500 Ом максимальное сопротивление

3.3 Схема неподвижной группы размыкающих контактов

Проводка цепи управления сигнализации

Соединение электрода

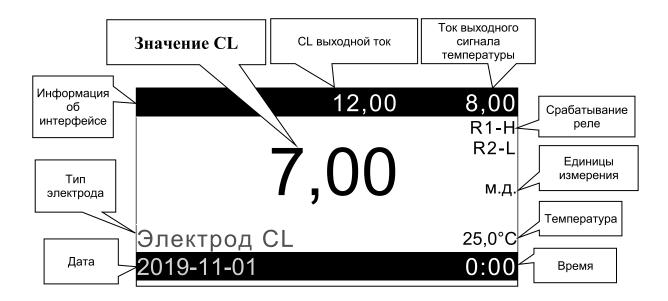
IV Описание панели

4.1 Описание панели

4.2 Описание нижней части

Чтобы избежать возможности доступа к прибору необученного персонала, включите защиту паролем при настройке параметров и внесении поправок. Ниже приведено описание каждой функции:

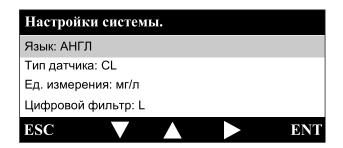
Запустите интерфейс настройки в режиме измерения, вернитесь в предыдущее меню под интерфейсом настройки.


Переключение и числовая настройка меню в интерфейсе настройки.

▲ : Переключение и числовая настройка меню в интерфейсе настройки.
 Просмотрите архивную информацию о сигналах тревоги в режиме измерения, войдите в меню следующего уровня в интерфейсе настройки и нажмите горячую клавишу интерфейса информации о сигналах тревоги.

Ввести: Просмотрите основные параметры в режиме измерения. Интерфейс настройки используется для входа в меню следующего уровня, горячая клавиша интерфейса системной информации.

4.3 Описание дисплея


Дисплей в режиме измерения выглядит следующим образом:

Описание работы индикаторов:

R1: индикатор действия реле 1, высокий уровень отображает красный свет, низкий уровень - зеленый свет.

R2: индикатор действия реле 2, высокий уровень показывает красный свет, низкий уровень - <u>зеленый свет.</u>

На рисунке выше показан интерфейс отображения системной информации и информации о сигналах тревоги.

Системная информация: Все параметры установки прибора показаны в информации о системе. Нажмите Enter для входа в интерфейс системной информации. Информация о срабатывании сигнализации: В памяти устройства могут храниться до 60 записей аварийного срабатывания реле. Нажмите кнопку для входа в интерфейс информации об аварийных сигналах.

V Описание меню

Меню анализатора разделено на четыре меню первого уровня (с разбивкой на функции), и каждое меню первого уровня включает одно или два подменю. Каждое меню пронумеровано с целью легкого просмотра и установки параметров метра. Кроме того, во вторичном меню будут отображаться параметры настройки прибора нижнего меню в соответствии с функцией в правом верхнем углу экрана, и пользователь может узнать параметры прибора, не входя в нижнее меню.

Главное меню включает четыре меню первого уровня:

1. Системные настройки

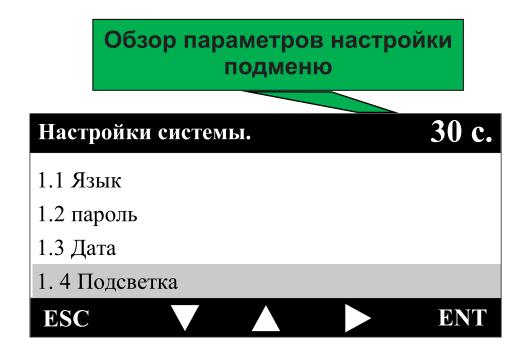
Системные параметры настройки прибора включают язык, пароль, дату, подсветку и т.д.

2. Настройка датчика

Включает режим отображения, калибровку, цифровую фильтрацию, температурный режим, регулировку температуры и компенсацию.

3. Настройка вывода

Включая реле 1, реле 2 и два параметра 4-20 мА.


4. Сброс к заводским настройкам

Включая настройку восстановления и восстановления данных о сигнализации.

Функция подсказки в меню

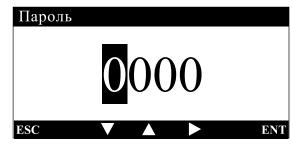
Войдите во вторичное меню, и настройки параметров для следующего меню будут отображаться в правом верхнем углу экрана.

Например, войдите в меню настройки системы подсветки, параметр подсветки выставлен на 30 секунд.

5.1 Системные настройки

Языкzh1.1.1. Английский1.1.2 简体中文Esc OK HET ENT

Меню 1.1 Язык


Прибор имеет интерфейс на китайском и английском языке. Переключение между языками не требует особых действий. Например: выберите упрощенный китайский и

Например: выберите упрощенный китайский и нажмите клавишу Enter для подтверждения, весь интерфейс дисплея прибора будет изменен на упрощенный китайский язык.

Примечание: Чтобы избежать неправильных действий пользователя, после выбора параметра и нажатия клавиши Enter внизу экрана появятся четыре подсказки «ESC», «OK», «NO» и «ENT», соответствующие к четырем кнопкам прибора. Пользователю необходимо еще раз подтвердить, что параметр выбран правильно. Для подтверждения нажмите ▼, что означает ОК, в противном случае нажмите ▲, что означает NO.

Меню 1.2 Пароль

Пароль по умолчанию — 0000. Мы можем изменить пароль в соответствии с вашими потребностями. После смены пароля пользователь будет должен вводить новый пароль для входа в меню настройки.

Меню1.3 Дата

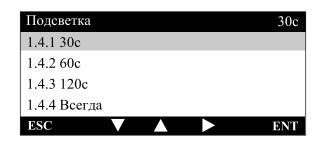
Это меню состоит из двух подменю.

- 1.3.1 Формат даты
- 1.3.2 Настройка даты

Меню 1.3.1 Формат даты

Прибор поддерживает выбор из трех форматов даты, и вы можете выбрать подходящий формат даты в соответствии с вашими потребностями.

	ESC			ENT
,	1.3.1.3	Месяц-день-год		
	1.3.1.2	День-месяц	-год	
	1. 3.1.1	Год-месяц-,	день	
	Формат	даты	Год-месяц-д	день


Меню 1.3.2 Настройка даты

Для настройки года, месяца, дня, часа, минут войдите в меню настройки даты. Системное время прибора будет автоматически изменено после правильной настройки даты.

Меню 1.4 Подсветка

Прибор имеет четыре значения затухания подсветки. Пользователь может настроить затухание подсветки согласно своим нуждам. По истечении времени затухания подсветки экран потемнеет.

5.2 Настройка датчика

Меню 2.1 Режим отображения

Этот прибор поддерживает 6 режимов отображения, каждый режим отображения представляет разную точность измерения и предполагает выбор разных единиц измерения.

Примечания:

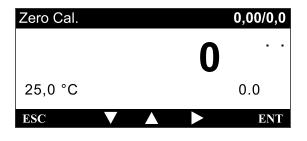
20,00 м.д.: Диапазон измерения - **0,00-20. 00 м.д.**, единица измерения - **м.д.**

20,00 мг/л: Диапазон измерения - **0,00-20. 00** мг/л, единица измерения - мг/л.

20,0 м.д.: Диапазон измерения - **0,0-20. 0 м.д.**, единица измерения - **м.д.**

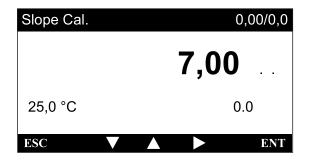
20,0мг/л: Диапазон измерения - **0,0-20. 0 мг/л**, единица измерения - **мг/л**.

20 м.д.: Диапазон измерения 0-20 м.д., единица измерения м.д.


20 мг/л: Диапазон измерения 0-20 мг/л, единица измерения мг/л.

Меню 2.2 Настройка коэффициентов

Этот анализатор выбирает подходящий коэффициент электрода в соответствии с диапазоном измерения пробы воды. Коэффициент электродов определяется производителем и может быть настроен для достижения цели коррекции.


Меню 2.2.1 Калибровка нулевой точки

Для калибровки нуля требуется дистиллированная вода или чистая вода без остаточного хлора в качестве калибровочного раствора. Сначала промойте зонд чистой водой и просушите; вставьте зонд в калибровочный раствор и наблюдайте за значением нА на странице калибровки, подождите, пока значение нА станет стабильным на уровне около 0,0 нА. Нажмите Enter для подтверждения, вернитесь к интерфейсу коррекции после успешной коррекции. Если коррекция не удалась, система останется в интерфейсе коррекции нулевой точки.

Меню 2.2.2 Калибровка уклона

Коррекция наклона обычно осуществляется в воздухе. Прибор будет помещен в воздух с теоретической нулевой точкой в качестве ориентира. Придерживайтесь значения, приведенного на странице калибровки. После того, как значение станет стабильным, нажмите клавишу Enter для подтверждения. После успешной калибровки система возвращается в интерфейс меню калибровки. В случае ошибки система остается в меню калибровки.

Меню 2.3 Цифровая фильтрация

Измеренное значение измерителя фильтруется посредством усреднения, и поддерживаются три метода цифровой фильтрации.

Нижняя точка В среднем каждые 5 секунд Средняя точка: в среднем каждые 10 секунд Высокая точка: в среднем каждые 20 секунд

Примечание: Скорость изменения нижней точки выше, чем скорость изменения верхней точки.

Меню 2.4 Режим температуры

Прибор поддерживает два типа температурной компенсации: PT1000 и NTC10K. Прибор отображает данные в двух форматах: Градусы Цельсия и Фаренгейта.

Примечание 2.4.1 РТС°С: РТ1000 температурный зонд, отображение в градусах Цельсия.

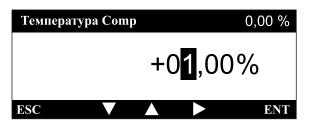
2.4.2 NTC°C: NTC10К температурный зонд, отображение в градусах Цельсия.

2.4.3МТС°С: ручной режим, отображение в градусах Цельсия.

2.4.4 РТГ°F: РТ1000 температурный зонд, отображение в градусах Фаренгейта.

2.4.5 РТГ°F: NTC10К температурный зонд, отображение в градусах Фаренгейта.

2.4.6 MTF°F: ручной режим, отображение в градусах Фаренгейта


Меню 2.5 Регулировка температуры

Регулировка температуры разделена на две части: верхняя часть - это значение регулировки температуры, а нижняя часть - отображаемое значение настроенной температуры. После нажатия клавиши Enter дисплей температуры прибора будет отображать отрегулированное значение.

Меню 2.6 Компенсация

Пользователи могут свободно устанавливать параметры температурной компенсации в соответствии с реальными условиями. После подтверждения нажатием **Enter**, измеренные значения изменятся в соответствии с параметрами температурной компенсации.

Примечание: Эталонная температура компенсации температуры прибора зафиксирована на уровне 25 °C, а формула расчета:

$$Ct = C25\{1 + a(T-25)\}$$

C25 - это значение CL при 25 °C.

α - это коэффициент компенсации температуры:

Т - температура испытуемого раствора

Сt - это температура Т °С

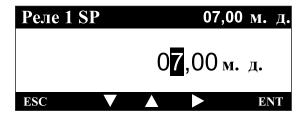
5.3 Настройка вывода

Настройки выхода в основном включают реле 1, реле 2 и две настройки 4-20 мA, из которых два 4-20 мA соответствуют измеренным значениям температуры. Ниже в качестве примера приводится реле 1 и 4-20 мA остаточного хлора.

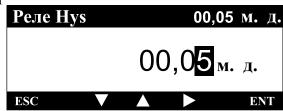

Меню 3.1 Реле 1

Реле 1 содержит 3 подменю.

- 3.1.1 Режим Реле 1
- 3.2.1 Значение срабатывания Реле 1
- 3.3.1 Значение гистерезиса Реле 1

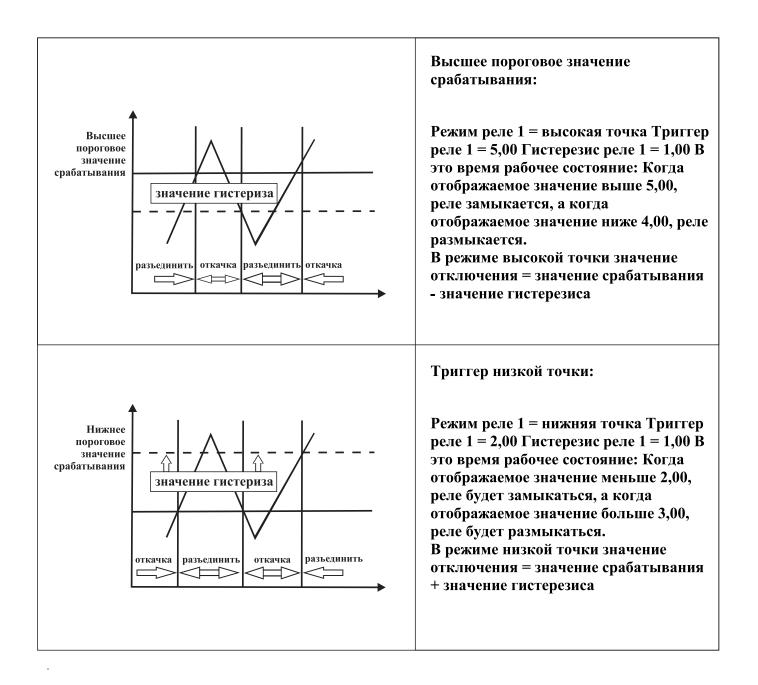

Меню 3.1.1 Режим Реле 1

Реле разделяются по трем режимам: выкл., высокий и низкий. Пользователи могут установить соответствующий режим реле в соответствии со своими потребностями, нажмите Enter для подтверждения.


Меню 3.1.2 Значение срабатывания Реле 1

Пользователь может свободно установить значение срабатывания в пределах диапазона, разрешенного измерителем, и нажать Enter для подтверждения.

Меню 3.1.3 Значение гистерезиса Реле 1


Пользователь может свободно установить значение гистерезиса в пределах допустимого диапазона и нажать Enter для подтверждения.

Примечание:

Значение срабатывания сигнализации больше (или меньше). Значение гистерезиса ниже (или больше) снимается.

Порядок срабатывания реле следующий:

Меню 3.2 Реле 2

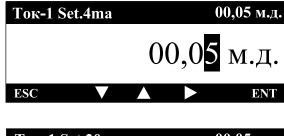
Настройка реле 2 такая же, как и принцип настройки реле 1, см. Настройку реле 1.

Меню 3.3 Электрический ток

Это меню разделено на четыре подменю:

- 3.3.1 Установка электрического тока 1-4ma
- 3.3.2 Установка электрического тока 1-20ma
- 3.3.3 Коррекция электрического тока 1-4ma
- 3.3.4 Коррекция электрического тока 1-20та

Поскольку порядок настройки и внесения поправок для 4 мА и 20 мА аналогичны, в качестве примера рассматривается порядок настройки и внесения поправок для 4 мА.


Меню 3.3.1 Установка электрического тока 1-4ma

Пользователь может свободно установить текущее значение настройки 1-4 мА. После нажатия Enter система автоматически сохранит настройки.

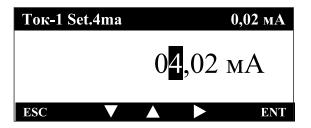
Меню 3.3.2 Установка электрического тока 1-20ma

Пользователь может свободно установить текущее значение настройки 1-20 мА. После нажатия Enter система автоматически сохранит настройки.

Примечание: CL и текущее значение, установленное в 4-20 мA, соответствуют друг другу, а формула расчета:

outMa= (20,00-4,00) / (endMa - startMa) * (hold- startMa) + 4,00 **outMa - величина выходного тока**

startMa: Значение CL, установленное на 4 мА


endMa: Значение CL, установленное на 20 мА

Hold - текущее измеренное значение

Например, для 4 мА установлено значение 0,00 м.д., для 20 мА установлено значение 20,00 м.д., а когда значение CL равно 10,00 м.д., текущий выходной сигнал составляет 12,00 мА.

Меню 3.3.3 Коррекция электрического тока 1-4ma

После входа в интерфейс калибровки на экране будет отображаться значение на выводе. Амперметр будет измерять значение выходного тока 1 и настраивать текущее значение на экране так, чтобы оно совпадало с текущим значением, измеренным амперметром.

Меню 3.3.3 Коррекция электрического тока 1-20та

Порядок настройки тока 20 мА такой же, как у тока 4 мА. Порядок поправки приведен в пункте про 4ma.

Меню 3.4 Электрический ток 2

Порядок настройки тока 2 такой же, как у тока 1. См. данные о Ток 1.

5.4 Сброс к заводским настройкам

Меню 4.1 Восстановление настроек

Нажмите Enter для подтверждения, все настройки параметров прибора будут восстановлены до значений по умолчанию.

Меню 4.2 Восстановление сигнализаций

После нажатия клавиши Enter информация о тревоге будет удалена с прибора.

Сброс к заводским настройкам 4.1 Восстановление настроек 4.2 Восстановление сигнализации ESC ▼ ▲ ► ENT

VI Заводская настройка по умолчанию

Меню	Измерительный диапазон	Заводское значение по умолчанию
Измерительное устройство	м.д. / мг/л	м.д.
Цифровая фильтрация	Высокий/средний/низкий	низкий
Калибровка	Нулевая точка/уклон	Нулевая точка
Компенсация температуры	PTC/NTC/Ручной	Руководство
Ручная компенсация температуры	0,0 ~ 100,0 °C	25,0 евро
Высшее пороговое значение срабатывания сигнализации	0,00 ~ 20,00 м д	15,00 м.д.
Высшее пороговое значение гистерезиса	0,00 ~ 20,00 м д	0,5 м.д.
Нижнее пороговое значение срабатывания сигнализации	0,00 ~ 20,00 м д	5,00 м.д.
Нижнее пороговое значение гистерезиса	0,00 ~ 20,00 м д	0,5 м.д.
4 мА соответствующее значение	0,00 ~ 20,00 м д	0 м.д.
20 мА соответствующее значение	0,00 ~ 20,00 мд	20,00 м.д.
пользовательски й пароль	0 ~ 9999	0000 (6666 общие)
Подсветка	30с~Всегда	30 c.

По вопросам продаж и поддержки обращайтесь:

Алматы (727)345-47-04 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Волоград (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89

Россия +7(495)268-04-70

Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81

Казахстан +7(727)345-47-04

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47

Беларусь +375-257-127-884

Севастополь (8692)22-31-93 Саранск (8342)22-96-24 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Сыктывкар (8212)25-95-17

Ростов-на-Дону (863)308-18-15

Санкт-Петербург (812)309-46-40

Рязань (4912)46-61-64

Самара (846)206-03-16

Саратов (845)249-38-78

Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35

Узбекистан +998(71)205-18-59

Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Киргизия +996(312)96-26-47